Subalgebra 2A21C15
26 out of 119
Computations done by the calculator project.

Subalgebra type: 2A21 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A21 .
Centralizer: A11 + T2 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: C14
Basis of Cartan of centralizer: 3 vectors: (1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)
Contained up to conjugation as a direct summand of: 2A21+A11 .

Elements Cartan subalgebra scaled to act by two by components: A21: (2, 4, 4, 4, 2): 4, A21: (0, 0, 2, 4, 2): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g24, g16
Positive simple generators: g24, g16
Cartan symmetric matrix: (1001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (4004)
Decomposition of ambient Lie algebra: 3V2ω24Vω1+ω23V2ω14Vω24Vω15V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V4ψ3Vω2+ψ2+2ψ3Vω1+ψ1+2ψ3V2ω2+2ψ2Vω1+ω2+ψ1+ψ2V2ω1+2ψ1Vω1ψ1+2ψ3Vω2ψ2+2ψ3Vω1+ω2ψ1+ψ2V2ω2V2ω1Vω1+ω2+ψ1ψ23V0V2ω12ψ1Vω1+ω2ψ1ψ2V2ω22ψ2Vω2+ψ22ψ3Vω1+ψ12ψ3Vω1ψ12ψ3Vω2ψ22ψ3V4ψ3
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 23) ; the vectors are over the primal subalgebra.g5h1h3h5g5g11g14g15g17g4g8g9g12g23g24g25g18g20g21g22g13g16g19
weight00000ω1ω1ω1ω1ω2ω2ω2ω22ω12ω12ω1ω1+ω2ω1+ω2ω1+ω2ω1+ω22ω22ω22ω2
weights rel. to Cartan of (centralizer+semisimple s.a.). 4ψ30004ψ3ω1ψ12ψ3ω1+ψ12ψ3ω1ψ1+2ψ3ω1+ψ1+2ψ3ω2ψ22ψ3ω2+ψ22ψ3ω2ψ2+2ψ3ω2+ψ2+2ψ32ω12ψ12ω12ω1+2ψ1ω1+ω2ψ1ψ2ω1+ω2+ψ1ψ2ω1+ω2ψ1+ψ2ω1+ω2+ψ1+ψ22ω22ψ22ω22ω2+2ψ2
Isotypic module decomposition over primal subalgebra (total 21 isotypic components).
Isotypical components + highest weightV4ψ3 → (0, 0, 0, 0, -4)V0 → (0, 0, 0, 0, 0)V4ψ3 → (0, 0, 0, 0, 4)Vω1ψ12ψ3 → (1, 0, -1, 0, -2)Vω1+ψ12ψ3 → (1, 0, 1, 0, -2)Vω1ψ1+2ψ3 → (1, 0, -1, 0, 2)Vω1+ψ1+2ψ3 → (1, 0, 1, 0, 2)Vω2ψ22ψ3 → (0, 1, 0, -1, -2)Vω2+ψ22ψ3 → (0, 1, 0, 1, -2)Vω2ψ2+2ψ3 → (0, 1, 0, -1, 2)Vω2+ψ2+2ψ3 → (0, 1, 0, 1, 2)V2ω12ψ1 → (2, 0, -2, 0, 0)V2ω1 → (2, 0, 0, 0, 0)V2ω1+2ψ1 → (2, 0, 2, 0, 0)Vω1+ω2ψ1ψ2 → (1, 1, -1, -1, 0)Vω1+ω2+ψ1ψ2 → (1, 1, 1, -1, 0)Vω1+ω2ψ1+ψ2 → (1, 1, -1, 1, 0)Vω1+ω2+ψ1+ψ2 → (1, 1, 1, 1, 0)V2ω22ψ2 → (0, 2, 0, -2, 0)V2ω2 → (0, 2, 0, 0, 0)V2ω2+2ψ2 → (0, 2, 0, 2, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16W17W18W19W20W21
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g5
Cartan of centralizer component.
h1
h3
h5
g5
g11
g17
g14
g15
g15
g14
g17
g11
g4
g12
g8
g9
g9
g8
g12
g4
g23
g1
2g25
Semisimple subalgebra component.
g24
2h5+4h4+4h3+4h2+2h1
2g24
g25
g1
2g23
g18
g10
g2
g22
g20
g7
g6
g21
g21
g6
g7
g20
g22
g2
g10
g18
g13
g3
2g19
Semisimple subalgebra component.
g16
2h5+4h4+2h3
2g16
g19
g3
2g13
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above000ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
2ω1
0
2ω1
2ω1
0
2ω1
2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
2ω2
0
2ω2
2ω2
0
2ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer4ψ304ψ3ω1ψ12ψ3
ω1ψ12ψ3
ω1+ψ12ψ3
ω1+ψ12ψ3
ω1ψ1+2ψ3
ω1ψ1+2ψ3
ω1+ψ1+2ψ3
ω1+ψ1+2ψ3
ω2ψ22ψ3
ω2ψ22ψ3
ω2+ψ22ψ3
ω2+ψ22ψ3
ω2ψ2+2ψ3
ω2ψ2+2ψ3
ω2+ψ2+2ψ3
ω2+ψ2+2ψ3
2ω12ψ1
2ψ1
2ω12ψ1
2ω1
0
2ω1
2ω1+2ψ1
2ψ1
2ω1+2ψ1
ω1+ω2ψ1ψ2
ω1+ω2ψ1ψ2
ω1ω2ψ1ψ2
ω1ω2ψ1ψ2
ω1+ω2+ψ1ψ2
ω1+ω2+ψ1ψ2
ω1ω2+ψ1ψ2
ω1ω2+ψ1ψ2
ω1+ω2ψ1+ψ2
ω1+ω2ψ1+ψ2
ω1ω2ψ1+ψ2
ω1ω2ψ1+ψ2
ω1+ω2+ψ1+ψ2
ω1+ω2+ψ1+ψ2
ω1ω2+ψ1+ψ2
ω1ω2+ψ1+ψ2
2ω22ψ2
2ψ2
2ω22ψ2
2ω2
0
2ω2
2ω2+2ψ2
2ψ2
2ω2+2ψ2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M4ψ3M0M4ψ3Mω1ψ12ψ3Mω1ψ12ψ3Mω1+ψ12ψ3Mω1+ψ12ψ3Mω1ψ1+2ψ3Mω1ψ1+2ψ3Mω1+ψ1+2ψ3Mω1+ψ1+2ψ3Mω2ψ22ψ3Mω2ψ22ψ3Mω2+ψ22ψ3Mω2+ψ22ψ3Mω2ψ2+2ψ3Mω2ψ2+2ψ3Mω2+ψ2+2ψ3Mω2+ψ2+2ψ3M2ω12ψ1M2ψ1M2ω12ψ1M2ω1M0M2ω1M2ω1+2ψ1M2ψ1M2ω1+2ψ1Mω1+ω2ψ1ψ2Mω1+ω2ψ1ψ2Mω1ω2ψ1ψ2Mω1ω2ψ1ψ2Mω1+ω2+ψ1ψ2Mω1+ω2+ψ1ψ2Mω1ω2+ψ1ψ2Mω1ω2+ψ1ψ2Mω1+ω2ψ1+ψ2Mω1+ω2ψ1+ψ2Mω1ω2ψ1+ψ2Mω1ω2ψ1+ψ2Mω1+ω2+ψ1+ψ2Mω1+ω2+ψ1+ψ2Mω1ω2+ψ1+ψ2Mω1ω2+ψ1+ψ2M2ω22ψ2M2ψ2M2ω22ψ2M2ω2M0M2ω2M2ω2+2ψ2M2ψ2M2ω2+2ψ2
Isotypic characterM4ψ33M0M4ψ3Mω1ψ12ψ3Mω1ψ12ψ3Mω1+ψ12ψ3Mω1+ψ12ψ3Mω1ψ1+2ψ3Mω1ψ1+2ψ3Mω1+ψ1+2ψ3Mω1+ψ1+2ψ3Mω2ψ22ψ3Mω2ψ22ψ3Mω2+ψ22ψ3Mω2+ψ22ψ3Mω2ψ2+2ψ3Mω2ψ2+2ψ3Mω2+ψ2+2ψ3Mω2+ψ2+2ψ3M2ω12ψ1M2ψ1M2ω12ψ1M2ω1M0M2ω1M2ω1+2ψ1M2ψ1M2ω1+2ψ1Mω1+ω2ψ1ψ2Mω1+ω2ψ1ψ2Mω1ω2ψ1ψ2Mω1ω2ψ1ψ2Mω1+ω2+ψ1ψ2Mω1+ω2+ψ1ψ2Mω1ω2+ψ1ψ2Mω1ω2+ψ1ψ2Mω1+ω2ψ1+ψ2Mω1+ω2ψ1+ψ2Mω1ω2ψ1+ψ2Mω1ω2ψ1+ψ2Mω1+ω2+ψ1+ψ2Mω1+ω2+ψ1+ψ2Mω1ω2+ψ1+ψ2Mω1ω2+ψ1+ψ2M2ω22ψ2M2ψ2M2ω22ψ2M2ω2M0M2ω2M2ω2+2ψ2M2ψ2M2ω2+2ψ2

Semisimple subalgebra: W_{13}+W_{20}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00): (300.00, 300.00)
1: (0.00, 1.00, 0.00, 0.00, 0.00): (200.00, 400.00)
2: (0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)




Made total 147792114 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
2*2 (unknown) gens:
(
g_{-24}, g_{24},
x_{4} g_{-13}+x_{5} g_{-16}+x_{6} g_{-19}, x_{12} g_{19}+x_{11} g_{16}+x_{10} g_{13})

Unknown splitting cartan of centralizer.
x_{17} h_{5}+x_{16} h_{4}+x_{15} h_{3}+x_{14} h_{2}+x_{13} h_{1}, x_{22} h_{5}+x_{21} h_{4}+x_{20} h_{3}+x_{19} h_{2}+x_{18} h_{1}, x_{27} h_{5}+x_{26} h_{4}+x_{25} h_{3}+x_{24} h_{2}+x_{23} h_{1}
h: (2, 4, 4, 4, 2), e = combination of g_{23} g_{24} g_{25} , f= combination of g_{-23} g_{-24} g_{-25} h: (0, 0, 2, 4, 2), e = combination of g_{13} g_{16} g_{19} , f= combination of g_{-13} g_{-16} g_{-19} Positive weight subsystem: 2 vectors: (1, 0), (0, 1)
Symmetric Cartan default scale: \begin{pmatrix}
2 & 0\\
0 & 2\\
\end{pmatrix}Character ambient Lie algebra: 3V_{2\omega_{2}}+4V_{\omega_{1}+\omega_{2}}+3V_{2\omega_{1}}+4V_{\omega_{2}}+4V_{\omega_{1}}+4V_{-\omega_{1}+\omega_{2}}+11V_{0}+4V_{\omega_{1}-\omega_{2}}+4V_{-\omega_{1}}+4V_{-\omega_{2}}+3V_{-2\omega_{1}}+4V_{-\omega_{1}-\omega_{2}}+3V_{-2\omega_{2}}
A necessary system to realize the candidate subalgebra.
1/2x_{15}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{27}^{2}x_{28} +x_{14}^{2}x_{21}^{2}x_{27}^{2}x_{28}
-x_{13} x_{14} x_{21}^{2}x_{27}^{2}x_{28} +x_{13}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{15} x_{16} x_{20} x_{21} x_{27}^{2}x_{28}
+x_{14} x_{16} x_{20} x_{21} x_{27}^{2}x_{28} +x_{14} x_{15} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{14}^{2}x_{20} x_{21} x_{27}^{2}x_{28}
+2x_{13} x_{14} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{13}^{2}x_{20} x_{21} x_{27}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{27}^{2}x_{28}
-2x_{14} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} +x_{13} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} -x_{15}^{2}x_{19} x_{21} x_{27}^{2}x_{28}
+2x_{14} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} -x_{13} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} +x_{14} x_{16} x_{18} x_{21} x_{27}^{2}x_{28}
-2x_{13} x_{16} x_{18} x_{21} x_{27}^{2}x_{28} -x_{14} x_{15} x_{18} x_{21} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{21} x_{27}^{2}x_{28}
+1/2x_{16}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{14} x_{16} x_{20}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{20}^{2}x_{27}^{2}x_{28}
-2x_{13} x_{14} x_{20}^{2}x_{27}^{2}x_{28} +2x_{13}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{16}^{2}x_{19} x_{20} x_{27}^{2}x_{28}
+x_{15} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{14} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} -x_{13} x_{16} x_{19} x_{20} x_{27}^{2}x_{28}
-3x_{14} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +x_{13} x_{14} x_{19} x_{20} x_{27}^{2}x_{28}
-2x_{13}^{2}x_{19} x_{20} x_{27}^{2}x_{28} -x_{14} x_{16} x_{18} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{20} x_{27}^{2}x_{28}
+2x_{14} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -4x_{13} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -x_{14}^{2}x_{18} x_{20} x_{27}^{2}x_{28}
+2x_{13} x_{14} x_{18} x_{20} x_{27}^{2}x_{28} +x_{16}^{2}x_{19}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{19}^{2}x_{27}^{2}x_{28}
+3/2x_{15}^{2}x_{19}^{2}x_{27}^{2}x_{28} -x_{13} x_{15} x_{19}^{2}x_{27}^{2}x_{28} +3/2x_{13}^{2}x_{19}^{2}x_{27}^{2}x_{28}
-x_{16}^{2}x_{18} x_{19} x_{27}^{2}x_{28} +2x_{15} x_{16} x_{18} x_{19} x_{27}^{2}x_{28} -2x_{15}^{2}x_{18} x_{19} x_{27}^{2}x_{28}
+x_{14} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} -3x_{13} x_{14} x_{18} x_{19} x_{27}^{2}x_{28}
+x_{16}^{2}x_{18}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{18}^{2}x_{27}^{2}x_{28} +2x_{15}^{2}x_{18}^{2}x_{27}^{2}x_{28}
-2x_{14} x_{15} x_{18}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{18}^{2}x_{27}^{2}x_{28} -x_{15}^{2}x_{21} x_{22} x_{26} x_{27} x_{28}
+2x_{14} x_{15} x_{21} x_{22} x_{26} x_{27} x_{28} -2x_{14}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{21} x_{22} x_{26} x_{27} x_{28}
-2x_{13}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +x_{15} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28}
-x_{14} x_{15} x_{20} x_{22} x_{26} x_{27} x_{28} +2x_{14}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{26} x_{27} x_{28}
+2x_{13}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28}
-x_{13} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +x_{15}^{2}x_{19} x_{22} x_{26} x_{27} x_{28} -2x_{14} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28}
+x_{13} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28}
+x_{14} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28}
+x_{15} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -1/2x_{14} x_{15} x_{20} x_{21} x_{26} x_{27} x_{28}
+x_{14}^{2}x_{20} x_{21} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{26} x_{27} x_{28} +x_{13}^{2}x_{20} x_{21} x_{26} x_{27} x_{28}
-x_{15} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +2x_{14} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28}
-x_{13} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +1/2x_{15}^{2}x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28}
+1/2x_{13} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28}
+2x_{13} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28}
-x_{13} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28} -x_{16} x_{17} x_{20}^{2}x_{26} x_{27} x_{28} +x_{14} x_{17} x_{20}^{2}x_{26} x_{27} x_{28}
+1/2x_{14} x_{16} x_{20}^{2}x_{26} x_{27} x_{28} -3/2x_{14}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{20}^{2}x_{26} x_{27} x_{28}
-2x_{13}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{15} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28}
-2x_{14} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28}
-1/2x_{15} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28}
+1/2x_{13} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28}
-2x_{13} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{20} x_{26} x_{27} x_{28}
+2x_{13}^{2}x_{19} x_{20} x_{26} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28}
+1/2x_{14} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28}
-2x_{14} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28}
+x_{14}^{2}x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{19}^{2}x_{26} x_{27} x_{28}
+2x_{15} x_{17} x_{19}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{15}^{2}x_{19}^{2}x_{26} x_{27} x_{28}
+x_{13} x_{15} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{13}^{2}x_{19}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{19} x_{26} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{19} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28}
+3x_{13} x_{14} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{18}^{2}x_{26} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{26} x_{27} x_{28}
+x_{15} x_{16} x_{18}^{2}x_{26} x_{27} x_{28} -2x_{15}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +2x_{14} x_{15} x_{18}^{2}x_{26} x_{27} x_{28}
-3/2x_{14}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28}
-x_{14} x_{15} x_{21} x_{22} x_{25} x_{27} x_{28} +2x_{14}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{25} x_{27} x_{28}
+2x_{13}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -x_{16}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{25} x_{27} x_{28}
-3x_{14}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{14} x_{20} x_{22} x_{25} x_{27} x_{28} -4x_{13}^{2}x_{20} x_{22} x_{25} x_{27} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} -2x_{14} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28}
-2x_{13} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{22} x_{25} x_{27} x_{28}
+2x_{13}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28}
-2x_{14} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28}
+x_{14}^{2}x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{17} x_{21}^{2}x_{25} x_{27} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{25} x_{27} x_{28} +1/2x_{14} x_{15} x_{21}^{2}x_{25} x_{27} x_{28} -x_{14}^{2}x_{21}^{2}x_{25} x_{27} x_{28}
+x_{13} x_{14} x_{21}^{2}x_{25} x_{27} x_{28} -x_{13}^{2}x_{21}^{2}x_{25} x_{27} x_{28} +x_{16} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28}
-x_{14} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{25} x_{27} x_{28}
+3/2x_{14}^{2}x_{20} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{21} x_{25} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{21} x_{25} x_{27} x_{28}
-x_{16} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28}
-2x_{14} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28}
-1/2x_{15} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28}
-x_{13} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} -3/2x_{14} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28}
+x_{13} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28} +1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{27} x_{28}
-x_{13}^{2}x_{19} x_{21} x_{25} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28}
-x_{14} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28}
+x_{14} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28}
-1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{14} x_{18} x_{21} x_{25} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28}
+3x_{14} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28}
+1/2x_{16}^{2}x_{19} x_{20} x_{25} x_{27} x_{28} -3/2x_{14} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28}
+4x_{13} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28}
-2x_{13} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -3x_{15} x_{17} x_{19}^{2}x_{25} x_{27} x_{28}
+x_{13} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{19}^{2}x_{25} x_{27} x_{28} +3/2x_{15} x_{16} x_{19}^{2}x_{25} x_{27} x_{28}
-1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} +4x_{15} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28}
-x_{14} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28}
+x_{16}^{2}x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -4x_{15} x_{17} x_{18}^{2}x_{25} x_{27} x_{28}
+2x_{14} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{18}^{2}x_{25} x_{27} x_{28} +2x_{15} x_{16} x_{18}^{2}x_{25} x_{27} x_{28}
-x_{14} x_{16} x_{18}^{2}x_{25} x_{27} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +2x_{14} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28}
-x_{13} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{15}^{2}x_{21} x_{22} x_{24} x_{27} x_{28} -2x_{14} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28}
+x_{13} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28}
-2x_{14} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28}
+3x_{14} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28}
-x_{13} x_{14} x_{20} x_{22} x_{24} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{16}^{2}x_{19} x_{22} x_{24} x_{27} x_{28}
+4x_{15} x_{16} x_{19} x_{22} x_{24} x_{27} x_{28} -3x_{15}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +2x_{13} x_{15} x_{19} x_{22} x_{24} x_{27} x_{28}
-3x_{13}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{24} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28}
+3x_{13} x_{14} x_{18} x_{22} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -2x_{14} x_{17} x_{21}^{2}x_{24} x_{27} x_{28}
+x_{13} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -1/2x_{15}^{2}x_{21}^{2}x_{24} x_{27} x_{28} +x_{14} x_{15} x_{21}^{2}x_{24} x_{27} x_{28}
-1/2x_{13} x_{15} x_{21}^{2}x_{24} x_{27} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28}
+4x_{14} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28}
+x_{15} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28}
-3/2x_{14} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28}
+1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{13}^{2}x_{20} x_{21} x_{24} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28}
-2x_{15} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{21} x_{24} x_{27} x_{28}
+3/2x_{15}^{2}x_{19} x_{21} x_{24} x_{27} x_{28} -x_{13} x_{15} x_{19} x_{21} x_{24} x_{27} x_{28} +3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{27} x_{28}
-x_{16} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{21} x_{24} x_{27} x_{28}
-x_{15}^{2}x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28}
-3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{20}^{2}x_{24} x_{27} x_{28}
+2x_{13} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{20}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{20}^{2}x_{24} x_{27} x_{28}
-x_{13} x_{16} x_{20}^{2}x_{24} x_{27} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +3x_{15} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28}
-x_{13} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16}^{2}x_{19} x_{20} x_{24} x_{27} x_{28} -3/2x_{15} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28}
+1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} +2x_{14} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28}
-2x_{13} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24} x_{27} x_{28} +x_{15} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28}
-x_{14} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28}
+3x_{13} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28}
-3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{18}^{2}x_{24} x_{27} x_{28}
-x_{15} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28}
+2x_{13} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28}
-2x_{13} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28}
-2x_{13} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28}
+4x_{13} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28} +x_{14}^{2}x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{23} x_{27} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{19} x_{22} x_{23} x_{27} x_{28} +2x_{15}^{2}x_{19} x_{22} x_{23} x_{27} x_{28}
-x_{14} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28}
+3x_{13} x_{14} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{16}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{15} x_{16} x_{18} x_{22} x_{23} x_{27} x_{28}
-4x_{15}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{14} x_{15} x_{18} x_{22} x_{23} x_{27} x_{28} -3x_{14}^{2}x_{18} x_{22} x_{23} x_{27} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{13} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{27} x_{28}
+x_{13} x_{15} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28}
+1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{13} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28}
+x_{14} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28}
-1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{14} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28}
+x_{15} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{27} x_{28}
-x_{15}^{2}x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28}
-3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{21} x_{23} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{21} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{18} x_{21} x_{23} x_{27} x_{28} +3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{27} x_{28}
+2x_{14} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -4x_{13} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -x_{14} x_{16} x_{20}^{2}x_{23} x_{27} x_{28}
+2x_{13} x_{16} x_{20}^{2}x_{23} x_{27} x_{28} +x_{16} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28}
-x_{14} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28}
-1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{27} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} +1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28}
-2x_{13} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28}
+4x_{15} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28}
+x_{16}^{2}x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28}
+x_{15} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -3x_{13} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{27} x_{28}
+3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28} +3x_{14} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28}
+x_{15} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28} -3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28}
+1/2x_{15}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{14} x_{15} x_{22}^{2}x_{26}^{2}x_{28} +x_{14}^{2}x_{22}^{2}x_{26}^{2}x_{28}
-x_{13} x_{14} x_{22}^{2}x_{26}^{2}x_{28} +x_{13}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{20} x_{22} x_{26}^{2}x_{28}
+x_{14} x_{17} x_{20} x_{22} x_{26}^{2}x_{28} +1/2x_{14} x_{15} x_{20} x_{22} x_{26}^{2}x_{28} -x_{14}^{2}x_{20} x_{22} x_{26}^{2}x_{28}
+x_{13} x_{14} x_{20} x_{22} x_{26}^{2}x_{28} -x_{13}^{2}x_{20} x_{22} x_{26}^{2}x_{28} +x_{15} x_{17} x_{19} x_{22} x_{26}^{2}x_{28}
-2x_{14} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} +x_{13} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{15}^{2}x_{19} x_{22} x_{26}^{2}x_{28}
+x_{14} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} +x_{14} x_{17} x_{18} x_{22} x_{26}^{2}x_{28}
-2x_{13} x_{17} x_{18} x_{22} x_{26}^{2}x_{28} -1/2x_{14} x_{15} x_{18} x_{22} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{22} x_{26}^{2}x_{28}
+1/2x_{17}^{2}x_{20}^{2}x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{20}^{2}x_{26}^{2}x_{28} +1/2x_{14}^{2}x_{20}^{2}x_{26}^{2}x_{28}
-3/4x_{13} x_{14} x_{20}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{20}^{2}x_{26}^{2}x_{28} -x_{17}^{2}x_{19} x_{20} x_{26}^{2}x_{28}
+1/2x_{15} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} +x_{14} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{13} x_{17} x_{19} x_{20} x_{26}^{2}x_{28}
-x_{14} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +3/4x_{13} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +1/2x_{13} x_{14} x_{19} x_{20} x_{26}^{2}x_{28}
-x_{13}^{2}x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{18} x_{20} x_{26}^{2}x_{28} +x_{13} x_{17} x_{18} x_{20} x_{26}^{2}x_{28}
+3/4x_{14} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -3/2x_{13} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -1/2x_{14}^{2}x_{18} x_{20} x_{26}^{2}x_{28}
+x_{13} x_{14} x_{18} x_{20} x_{26}^{2}x_{28} +x_{17}^{2}x_{19}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{19}^{2}x_{26}^{2}x_{28}
+1/2x_{15}^{2}x_{19}^{2}x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{19}^{2}x_{26}^{2}x_{28}
-x_{17}^{2}x_{18} x_{19} x_{26}^{2}x_{28} +x_{15} x_{17} x_{18} x_{19} x_{26}^{2}x_{28} -3/4x_{15}^{2}x_{18} x_{19} x_{26}^{2}x_{28}
+1/2x_{14} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} -3/2x_{13} x_{14} x_{18} x_{19} x_{26}^{2}x_{28}
+x_{17}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{15}^{2}x_{18}^{2}x_{26}^{2}x_{28}
-x_{14} x_{15} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{14}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{16} x_{22}^{2}x_{25} x_{26} x_{28}
+x_{14} x_{16} x_{22}^{2}x_{25} x_{26} x_{28} +x_{14} x_{15} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{14}^{2}x_{22}^{2}x_{25} x_{26} x_{28}
+2x_{13} x_{14} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{13}^{2}x_{22}^{2}x_{25} x_{26} x_{28} +x_{15} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{15} x_{21} x_{22} x_{25} x_{26} x_{28}
+x_{14}^{2}x_{21} x_{22} x_{25} x_{26} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{25} x_{26} x_{28} +x_{13}^{2}x_{21} x_{22} x_{25} x_{26} x_{28}
+x_{16} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{20} x_{22} x_{25} x_{26} x_{28}
+3/2x_{14}^{2}x_{20} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{25} x_{26} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{25} x_{26} x_{28}
-x_{16} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{15} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +4x_{14} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28}
-2x_{13} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28}
-x_{14} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28}
-3/2x_{14} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28}
+1/2x_{13} x_{14} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{13}^{2}x_{19} x_{22} x_{25} x_{26} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28}
+4x_{13} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28} +x_{14} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28}
-1/2x_{14}^{2}x_{18} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{14} x_{18} x_{22} x_{25} x_{26} x_{28} -x_{17}^{2}x_{20} x_{21} x_{25} x_{26} x_{28}
+x_{14} x_{17} x_{20} x_{21} x_{25} x_{26} x_{28} -x_{14}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{25} x_{26} x_{28}
-3/2x_{13}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} -1/2x_{15} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{13} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28}
+x_{14} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28}
-1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{26} x_{28} +x_{13}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28}
-x_{13} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28}
+3/2x_{13} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28} +1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{26} x_{28}
-x_{13} x_{14} x_{18} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{20} x_{25} x_{26} x_{28} -1/2x_{16} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28}
-3/2x_{14} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28}
+x_{14} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28}
-1/4x_{13} x_{14} x_{19} x_{20} x_{25} x_{26} x_{28} +1/2x_{13}^{2}x_{19} x_{20} x_{25} x_{26} x_{28}
+x_{14} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28}
-3/4x_{14} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28}
+1/4x_{14}^{2}x_{18} x_{20} x_{25} x_{26} x_{28} -1/2x_{13} x_{14} x_{18} x_{20} x_{25} x_{26} x_{28}
-2x_{17}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} +3/2x_{15} x_{17} x_{19}^{2}x_{25} x_{26} x_{28}
-1/2x_{13} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} -x_{15} x_{16} x_{19}^{2}x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{26} x_{28}
+1/4x_{13} x_{15} x_{19}^{2}x_{25} x_{26} x_{28} -3/4x_{13}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{25} x_{26} x_{28}
-x_{16} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28}
+1/2x_{14} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28}
+3/2x_{15} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28}
-1/2x_{13} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{18} x_{19} x_{25} x_{26} x_{28}
-2x_{17}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} -3/2x_{15} x_{16} x_{18}^{2}x_{25} x_{26} x_{28} +x_{14} x_{16} x_{18}^{2}x_{25} x_{26} x_{28}
+1/2x_{14} x_{15} x_{18}^{2}x_{25} x_{26} x_{28} -3/4x_{14}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{15} x_{16} x_{22}^{2}x_{24} x_{26} x_{28}
-2x_{14} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} +x_{13} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15}^{2}x_{22}^{2}x_{24} x_{26} x_{28}
+2x_{14} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{13} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28}
+2x_{14} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28}
+1/2x_{15}^{2}x_{21} x_{22} x_{24} x_{26} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28}
-x_{16} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28}
-2x_{14} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28}
-1/2x_{15} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28}
-x_{13} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} -3/2x_{14} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{14} x_{20} x_{22} x_{24} x_{26} x_{28}
-x_{13}^{2}x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{16} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28} -2x_{15} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28}
-x_{15} x_{16} x_{19} x_{22} x_{24} x_{26} x_{28} +3/2x_{15}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{19} x_{22} x_{24} x_{26} x_{28}
+3/2x_{13}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28}
+1/2x_{15} x_{16} x_{18} x_{22} x_{24} x_{26} x_{28} -x_{15}^{2}x_{18} x_{22} x_{24} x_{26} x_{28} +1/2x_{14} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28} -3/2x_{13} x_{14} x_{18} x_{22} x_{24} x_{26} x_{28}
+x_{17}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{15} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28}
+1/2x_{13} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} +x_{14} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28}
-3/4x_{13} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{26} x_{28}
+x_{13}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -2x_{17}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{24} x_{26} x_{28}
-x_{15}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{24} x_{26} x_{28} -3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{26} x_{28}
+x_{17}^{2}x_{18} x_{21} x_{24} x_{26} x_{28} -x_{15} x_{17} x_{18} x_{21} x_{24} x_{26} x_{28} +3/4x_{15}^{2}x_{18} x_{21} x_{24} x_{26} x_{28}
-1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28}
+3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{17}^{2}x_{20}^{2}x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{20}^{2}x_{24} x_{26} x_{28}
+3/2x_{14} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{13} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{14} x_{16} x_{20}^{2}x_{24} x_{26} x_{28}
+3/4x_{13} x_{16} x_{20}^{2}x_{24} x_{26} x_{28} +1/4x_{13} x_{14} x_{20}^{2}x_{24} x_{26} x_{28} -1/2x_{13}^{2}x_{20}^{2}x_{24} x_{26} x_{28}
+2x_{17}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} -3/2x_{15} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28}
+1/2x_{13} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28}
-1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28} -1/4x_{13} x_{15} x_{19} x_{20} x_{24} x_{26} x_{28}
+3/4x_{13}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{17}^{2}x_{18} x_{20} x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28}
+x_{15} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28}
-3/4x_{15} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28} -3/4x_{13} x_{14} x_{18} x_{20} x_{24} x_{26} x_{28}
+1/2x_{15} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28} -3/2x_{13} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28}
-1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28}
+1/4x_{15}^{2}x_{18} x_{19} x_{24} x_{26} x_{28} -3/4x_{13} x_{15} x_{18} x_{19} x_{24} x_{26} x_{28}
-x_{15} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +3/2x_{14} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +x_{15} x_{16} x_{18}^{2}x_{24} x_{26} x_{28}
-3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{26} x_{28} -1/2x_{15}^{2}x_{18}^{2}x_{24} x_{26} x_{28} +3/4x_{14} x_{15} x_{18}^{2}x_{24} x_{26} x_{28}
+x_{14} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -2x_{13} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{15} x_{22}^{2}x_{23} x_{26} x_{28}
+2x_{13} x_{15} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28}
+1/2x_{14} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28} -x_{13} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28}
+x_{14} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28}
-x_{14} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28}
+x_{14} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28}
-1/2x_{14}^{2}x_{20} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{14} x_{20} x_{22} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28}
+x_{15} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{26} x_{28}
-x_{15}^{2}x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28}
-3/2x_{13} x_{14} x_{19} x_{22} x_{23} x_{26} x_{28} +2x_{16} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28}
-2x_{15} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28} -x_{15} x_{16} x_{18} x_{22} x_{23} x_{26} x_{28}
+2x_{15}^{2}x_{18} x_{22} x_{23} x_{26} x_{28} -2x_{14} x_{15} x_{18} x_{22} x_{23} x_{26} x_{28} +3/2x_{14}^{2}x_{18} x_{22} x_{23} x_{26} x_{28}
+1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28}
-3/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28}
+1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{23} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{23} x_{26} x_{28}
-x_{15} x_{17} x_{19} x_{21} x_{23} x_{26} x_{28} +3/4x_{15}^{2}x_{19} x_{21} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28}
-x_{13} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{26} x_{28}
-2x_{17}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} +2x_{15} x_{17} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{15}^{2}x_{18} x_{21} x_{23} x_{26} x_{28}
+2x_{14} x_{15} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} -x_{14} x_{17} x_{20}^{2}x_{23} x_{26} x_{28}
+2x_{13} x_{17} x_{20}^{2}x_{23} x_{26} x_{28} +3/4x_{14} x_{16} x_{20}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{20}^{2}x_{23} x_{26} x_{28}
-1/4x_{14}^{2}x_{20}^{2}x_{23} x_{26} x_{28} +1/2x_{13} x_{14} x_{20}^{2}x_{23} x_{26} x_{28} -x_{17}^{2}x_{19} x_{20} x_{23} x_{26} x_{28}
+1/2x_{16} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} +x_{15} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28}
+1/2x_{14} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28}
-3/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28}
+2x_{13} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28}
-1/2x_{13} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28} -3/4x_{13} x_{14} x_{19} x_{20} x_{23} x_{26} x_{28}
+2x_{17}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28}
+x_{14} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} +3/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28}
-x_{14} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{18} x_{20} x_{23} x_{26} x_{28}
+3/4x_{14}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{15} x_{17} x_{19}^{2}x_{23} x_{26} x_{28} +3/2x_{13} x_{17} x_{19}^{2}x_{23} x_{26} x_{28}
+1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -1/4x_{15}^{2}x_{19}^{2}x_{23} x_{26} x_{28}
+3/4x_{13} x_{15} x_{19}^{2}x_{23} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28} -3/2x_{14} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28}
-x_{15} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28} +3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28}
+1/2x_{15}^{2}x_{18} x_{19} x_{23} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{19} x_{23} x_{26} x_{28}
+1/2x_{16}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{14} x_{16} x_{22}^{2}x_{25}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{25}^{2}x_{28}
-2x_{13} x_{14} x_{22}^{2}x_{25}^{2}x_{28} +2x_{13}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{16} x_{17} x_{21} x_{22} x_{25}^{2}x_{28}
+x_{14} x_{17} x_{21} x_{22} x_{25}^{2}x_{28} +1/2x_{14} x_{16} x_{21} x_{22} x_{25}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{25}^{2}x_{28}
+2x_{13} x_{14} x_{21} x_{22} x_{25}^{2}x_{28} -2x_{13}^{2}x_{21} x_{22} x_{25}^{2}x_{28} +x_{16} x_{17} x_{19} x_{22} x_{25}^{2}x_{28}
-3x_{14} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{25}^{2}x_{28}
+3/2x_{14} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} -x_{13} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{14} x_{17} x_{18} x_{22} x_{25}^{2}x_{28}
-4x_{13} x_{17} x_{18} x_{22} x_{25}^{2}x_{28} -x_{14} x_{16} x_{18} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{25}^{2}x_{28}
+1/2x_{17}^{2}x_{21}^{2}x_{25}^{2}x_{28} -1/2x_{14} x_{17} x_{21}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{21}^{2}x_{25}^{2}x_{28}
-3/4x_{13} x_{14} x_{21}^{2}x_{25}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{25}^{2}x_{28} -x_{17}^{2}x_{19} x_{21} x_{25}^{2}x_{28}
+1/2x_{16} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} +3/2x_{14} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} -x_{13} x_{17} x_{19} x_{21} x_{25}^{2}x_{28}
-x_{14} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +3/4x_{13} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +1/4x_{13} x_{14} x_{19} x_{21} x_{25}^{2}x_{28}
-1/2x_{13}^{2}x_{19} x_{21} x_{25}^{2}x_{28} -x_{14} x_{17} x_{18} x_{21} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{18} x_{21} x_{25}^{2}x_{28}
+3/4x_{14} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -1/4x_{14}^{2}x_{18} x_{21} x_{25}^{2}x_{28}
+1/2x_{13} x_{14} x_{18} x_{21} x_{25}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{25}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{25}^{2}x_{28}
+1/2x_{16}^{2}x_{19}^{2}x_{25}^{2}x_{28} -1/4x_{13} x_{16} x_{19}^{2}x_{25}^{2}x_{28} +1/2x_{13}^{2}x_{19}^{2}x_{25}^{2}x_{28}
-2x_{17}^{2}x_{18} x_{19} x_{25}^{2}x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{25}^{2}x_{28} -3/4x_{16}^{2}x_{18} x_{19} x_{25}^{2}x_{28}
+1/4x_{14} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} +1/2x_{13} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} -x_{13} x_{14} x_{18} x_{19} x_{25}^{2}x_{28}
+2x_{17}^{2}x_{18}^{2}x_{25}^{2}x_{28} -2x_{16} x_{17} x_{18}^{2}x_{25}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{25}^{2}x_{28}
-1/2x_{14} x_{16} x_{18}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{18}^{2}x_{25}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{24} x_{25} x_{28}
+x_{15} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{14} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} -x_{13} x_{16} x_{22}^{2}x_{24} x_{25} x_{28}
-3x_{14} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{13} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +x_{13} x_{14} x_{22}^{2}x_{24} x_{25} x_{28}
-2x_{13}^{2}x_{22}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28}
-2x_{14} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} +x_{13} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28}
-1/2x_{15} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28}
+1/2x_{13} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{24} x_{25} x_{28}
+2x_{13}^{2}x_{21} x_{22} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +1/2x_{16}^{2}x_{20} x_{22} x_{24} x_{25} x_{28} -3/2x_{14} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28}
+x_{13} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28}
+3x_{15} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{24} x_{25} x_{28} -3/2x_{15} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28}
+x_{16} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28}
-x_{14} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} +4x_{13} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28}
-1/2x_{16}^{2}x_{18} x_{22} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} -x_{17}^{2}x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{15} x_{17} x_{21}^{2}x_{24} x_{25} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -1/2x_{13} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{21}^{2}x_{24} x_{25} x_{28}
+3/4x_{13} x_{15} x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{13} x_{14} x_{21}^{2}x_{24} x_{25} x_{28} -x_{13}^{2}x_{21}^{2}x_{24} x_{25} x_{28}
+x_{17}^{2}x_{20} x_{21} x_{24} x_{25} x_{28} -1/2x_{16} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} -3/2x_{14} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28}
+x_{13} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28} -3/4x_{13} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28}
-1/4x_{13} x_{14} x_{20} x_{21} x_{24} x_{25} x_{28} +1/2x_{13}^{2}x_{20} x_{21} x_{24} x_{25} x_{28}
+2x_{17}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} -3/2x_{15} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28}
+1/2x_{13} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28}
-1/2x_{13} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28} -1/4x_{13} x_{15} x_{19} x_{21} x_{24} x_{25} x_{28}
+3/4x_{13}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{17}^{2}x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{16} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28}
+x_{15} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28}
-2x_{13} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} -3/4x_{15} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28}
-1/2x_{14} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28}
+1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28} -1/2x_{13} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28}
-3/4x_{13} x_{14} x_{18} x_{21} x_{24} x_{25} x_{28} -3x_{17}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +3x_{16} x_{17} x_{19} x_{20} x_{24} x_{25} x_{28}
-x_{16}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{25} x_{28} -x_{13}^{2}x_{19} x_{20} x_{24} x_{25} x_{28}
+2x_{17}^{2}x_{18} x_{20} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{24} x_{25} x_{28} +3/4x_{16}^{2}x_{18} x_{20} x_{24} x_{25} x_{28}
-1/4x_{14} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28} -1/2x_{13} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28}
+x_{13} x_{14} x_{18} x_{20} x_{24} x_{25} x_{28} +x_{17}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{19} x_{24} x_{25} x_{28}
+1/2x_{16}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -1/4x_{15} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28}
-3/4x_{13} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28} +x_{13} x_{15} x_{18} x_{19} x_{24} x_{25} x_{28}
-2x_{17}^{2}x_{18}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{24} x_{25} x_{28} -x_{16}^{2}x_{18}^{2}x_{24} x_{25} x_{28}
+1/2x_{15} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} +3/4x_{14} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{18}^{2}x_{24} x_{25} x_{28}
-x_{14} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{14} x_{15} x_{22}^{2}x_{23} x_{25} x_{28}
-4x_{13} x_{15} x_{22}^{2}x_{23} x_{25} x_{28} -x_{14}^{2}x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{14} x_{22}^{2}x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28}
+1/2x_{14} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28}
-2x_{14} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28} +4x_{13} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28}
+x_{14}^{2}x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28}
+4x_{13} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28}
-2x_{13} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{16} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28}
-2x_{15} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} +2x_{14} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28}
-2x_{13} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{23} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28}
-x_{14} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} +x_{13} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28}
+4x_{15} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28}
+x_{16}^{2}x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28}
-1/2x_{14} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +3/4x_{14} x_{15} x_{21}^{2}x_{23} x_{25} x_{28}
-3/2x_{13} x_{15} x_{21}^{2}x_{23} x_{25} x_{28} -1/2x_{14}^{2}x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{14} x_{21}^{2}x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28}
-3/4x_{14} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28} +3/2x_{13} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28}
+1/4x_{14}^{2}x_{20} x_{21} x_{23} x_{25} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{25} x_{28}
-x_{17}^{2}x_{19} x_{21} x_{23} x_{25} x_{28} +1/2x_{16} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{15} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28}
-x_{14} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{15} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28}
+x_{14} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -1/4x_{14} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28}
+x_{13} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{13} x_{14} x_{19} x_{21} x_{23} x_{25} x_{28}
+2x_{17}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} +3/2x_{15} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28}
-x_{14} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28} -1/2x_{14} x_{15} x_{18} x_{21} x_{23} x_{25} x_{28}
+3/4x_{14}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} +2x_{17}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{23} x_{25} x_{28}
+3/4x_{16}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -1/4x_{14} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28}
-1/2x_{13} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28} +x_{13} x_{14} x_{19} x_{20} x_{23} x_{25} x_{28}
-4x_{17}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} +4x_{16} x_{17} x_{18} x_{20} x_{23} x_{25} x_{28} -3/2x_{16}^{2}x_{18} x_{20} x_{23} x_{25} x_{28}
+x_{14} x_{16} x_{18} x_{20} x_{23} x_{25} x_{28} -x_{14}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} -x_{17}^{2}x_{19}^{2}x_{23} x_{25} x_{28}
+x_{16} x_{17} x_{19}^{2}x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19}^{2}x_{23} x_{25} x_{28} +1/4x_{15} x_{16} x_{19}^{2}x_{23} x_{25} x_{28}
+3/4x_{13} x_{16} x_{19}^{2}x_{23} x_{25} x_{28} -x_{13} x_{15} x_{19}^{2}x_{23} x_{25} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{23} x_{25} x_{28}
-2x_{16} x_{17} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{16}^{2}x_{18} x_{19} x_{23} x_{25} x_{28} -1/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28}
-3/4x_{14} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{14} x_{15} x_{18} x_{19} x_{23} x_{25} x_{28}
+x_{16}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{15}^{2}x_{22}^{2}x_{24}^{2}x_{28}
-x_{13} x_{15} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{13}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{16} x_{17} x_{21} x_{22} x_{24}^{2}x_{28}
+2x_{15} x_{17} x_{21} x_{22} x_{24}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{15}^{2}x_{21} x_{22} x_{24}^{2}x_{28}
+x_{13} x_{15} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{13}^{2}x_{21} x_{22} x_{24}^{2}x_{28} +2x_{16} x_{17} x_{20} x_{22} x_{24}^{2}x_{28}
-3x_{15} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} -x_{16}^{2}x_{20} x_{22} x_{24}^{2}x_{28}
+3/2x_{15} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} -1/2x_{13} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24}^{2}x_{28}
-3x_{13} x_{17} x_{18} x_{22} x_{24}^{2}x_{28} -1/2x_{15} x_{16} x_{18} x_{22} x_{24}^{2}x_{28} +3/2x_{13} x_{16} x_{18} x_{22} x_{24}^{2}x_{28}
+x_{17}^{2}x_{21}^{2}x_{24}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{21}^{2}x_{24}^{2}x_{28}
-1/2x_{13} x_{15} x_{21}^{2}x_{24}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{24}^{2}x_{28} -2x_{17}^{2}x_{20} x_{21} x_{24}^{2}x_{28}
+x_{16} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} +3/2x_{15} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{13} x_{17} x_{20} x_{21} x_{24}^{2}x_{28}
-x_{15} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/4x_{13} x_{15} x_{20} x_{21} x_{24}^{2}x_{28}
-3/4x_{13}^{2}x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{15} x_{17} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{13} x_{17} x_{18} x_{21} x_{24}^{2}x_{28}
+1/2x_{15} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -1/4x_{15}^{2}x_{18} x_{21} x_{24}^{2}x_{28}
+3/4x_{13} x_{15} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{17}^{2}x_{20}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{20}^{2}x_{24}^{2}x_{28}
+1/2x_{16}^{2}x_{20}^{2}x_{24}^{2}x_{28} -1/4x_{13} x_{16} x_{20}^{2}x_{24}^{2}x_{28} +1/2x_{13}^{2}x_{20}^{2}x_{24}^{2}x_{28}
-x_{17}^{2}x_{18} x_{20} x_{24}^{2}x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24}^{2}x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24}^{2}x_{28}
+1/4x_{15} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} +3/4x_{13} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} -x_{13} x_{15} x_{18} x_{20} x_{24}^{2}x_{28}
+3/2x_{17}^{2}x_{18}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{18}^{2}x_{24}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{24}^{2}x_{28}
-3/4x_{15} x_{16} x_{18}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{18}^{2}x_{24}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{23} x_{24} x_{28}
+2x_{15} x_{16} x_{22}^{2}x_{23} x_{24} x_{28} -2x_{15}^{2}x_{22}^{2}x_{23} x_{24} x_{28} +x_{14} x_{15} x_{22}^{2}x_{23} x_{24} x_{28}
+2x_{13} x_{15} x_{22}^{2}x_{23} x_{24} x_{28} -3x_{13} x_{14} x_{22}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28}
-2x_{15} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{23} x_{24} x_{28}
+2x_{15}^{2}x_{21} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{13} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28}
+3x_{13} x_{14} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28}
+4x_{15} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28}
-2x_{13} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{16}^{2}x_{20} x_{22} x_{23} x_{24} x_{28} -2x_{15} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28}
+1/2x_{14} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28}
-x_{15} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28} +3x_{13} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28}
+1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28} -3/2x_{13} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28}
-2x_{15} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28} +3x_{14} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28}
+x_{15} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28} -3/2x_{14} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28}
-x_{17}^{2}x_{21}^{2}x_{23} x_{24} x_{28} +x_{15} x_{17} x_{21}^{2}x_{23} x_{24} x_{28} -3/4x_{15}^{2}x_{21}^{2}x_{23} x_{24} x_{28}
+1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} +x_{13} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} -3/2x_{13} x_{14} x_{21}^{2}x_{23} x_{24} x_{28}
+2x_{17}^{2}x_{20} x_{21} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} -2x_{15} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28}
+1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} +x_{13} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28}
+3/2x_{15} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28}
-x_{13} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28}
-1/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{24} x_{28}
+1/2x_{15} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28} -3/2x_{13} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28}
-1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28}
+1/4x_{15}^{2}x_{19} x_{21} x_{23} x_{24} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{23} x_{24} x_{28}
+x_{15} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28} -3/2x_{14} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28}
-x_{15} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28} +3/2x_{14} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28}
+1/2x_{15}^{2}x_{18} x_{21} x_{23} x_{24} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{23} x_{24} x_{28}
-2x_{17}^{2}x_{20}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{20}^{2}x_{23} x_{24} x_{28} -3/4x_{16}^{2}x_{20}^{2}x_{23} x_{24} x_{28}
+1/4x_{14} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} +1/2x_{13} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} -x_{13} x_{14} x_{20}^{2}x_{23} x_{24} x_{28}
+x_{17}^{2}x_{19} x_{20} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{23} x_{24} x_{28} +1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{24} x_{28}
-1/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28}
+x_{13} x_{15} x_{19} x_{20} x_{23} x_{24} x_{28} +2x_{17}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{24} x_{28}
+x_{16}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -1/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28} -3/4x_{14} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28}
+x_{14} x_{15} x_{18} x_{20} x_{23} x_{24} x_{28} -3x_{17}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3x_{16} x_{17} x_{18} x_{19} x_{23} x_{24} x_{28}
-3/2x_{16}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{24} x_{28}
-x_{15}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +x_{16}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{23}^{2}x_{28}
+2x_{15}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{14} x_{15} x_{22}^{2}x_{23}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{23}^{2}x_{28}
-2x_{16} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{23}^{2}x_{28}
-2x_{15}^{2}x_{21} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{15} x_{21} x_{22} x_{23}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{23}^{2}x_{28}
+2x_{16} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} -4x_{15} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{17} x_{20} x_{22} x_{23}^{2}x_{28}
-x_{16}^{2}x_{20} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{16} x_{20} x_{22} x_{23}^{2}x_{28} -x_{14} x_{16} x_{20} x_{22} x_{23}^{2}x_{28}
+2x_{15} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -3x_{14} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -x_{15} x_{16} x_{19} x_{22} x_{23}^{2}x_{28}
+3/2x_{14} x_{16} x_{19} x_{22} x_{23}^{2}x_{28} +x_{17}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{23}^{2}x_{28}
+3/4x_{15}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{23}^{2}x_{28} +3/4x_{14}^{2}x_{21}^{2}x_{23}^{2}x_{28}
-2x_{17}^{2}x_{20} x_{21} x_{23}^{2}x_{28} +x_{16} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{20} x_{21} x_{23}^{2}x_{28}
-x_{14} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} -3/2x_{15} x_{16} x_{20} x_{21} x_{23}^{2}x_{28} +x_{14} x_{16} x_{20} x_{21} x_{23}^{2}x_{28}
+1/2x_{14} x_{15} x_{20} x_{21} x_{23}^{2}x_{28} -3/4x_{14}^{2}x_{20} x_{21} x_{23}^{2}x_{28} -x_{15} x_{17} x_{19} x_{21} x_{23}^{2}x_{28}
+3/2x_{14} x_{17} x_{19} x_{21} x_{23}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{23}^{2}x_{28} -3/2x_{14} x_{16} x_{19} x_{21} x_{23}^{2}x_{28}
-1/2x_{15}^{2}x_{19} x_{21} x_{23}^{2}x_{28} +3/4x_{14} x_{15} x_{19} x_{21} x_{23}^{2}x_{28} +2x_{17}^{2}x_{20}^{2}x_{23}^{2}x_{28}
-2x_{16} x_{17} x_{20}^{2}x_{23}^{2}x_{28} +3/4x_{16}^{2}x_{20}^{2}x_{23}^{2}x_{28} -1/2x_{14} x_{16} x_{20}^{2}x_{23}^{2}x_{28}
+1/2x_{14}^{2}x_{20}^{2}x_{23}^{2}x_{28} -2x_{17}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{23}^{2}x_{28}
-x_{16}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +1/2x_{15} x_{16} x_{19} x_{20} x_{23}^{2}x_{28} +3/4x_{14} x_{16} x_{19} x_{20} x_{23}^{2}x_{28}
-x_{14} x_{15} x_{19} x_{20} x_{23}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{23}^{2}x_{28}
+3/4x_{16}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/4x_{15} x_{16} x_{19}^{2}x_{23}^{2}x_{28} +1/2x_{15}^{2}x_{19}^{2}x_{23}^{2}x_{28}
-1= 0
x_{14} = 0
x_{19} = 0
x_{24} = 0
x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} -2= 0
x_{6} x_{11} +x_{5} x_{10} = 0
x_{5} x_{12} +x_{4} x_{11} = 0
x_{6} x_{12} +x_{5} x_{11} -1= 0
x_{4} x_{16} -x_{4} x_{15} = 0
x_{5} x_{16} -x_{5} x_{14} = 0
x_{6} x_{15} -x_{6} x_{14} = 0
x_{10} x_{16} -x_{10} x_{15} = 0
x_{11} x_{16} -x_{11} x_{14} = 0
x_{12} x_{15} -x_{12} x_{14} = 0
x_{4} x_{21} -x_{4} x_{20} = 0
x_{5} x_{21} -x_{5} x_{19} = 0
x_{6} x_{20} -x_{6} x_{19} = 0
x_{10} x_{21} -x_{10} x_{20} = 0
x_{11} x_{21} -x_{11} x_{19} = 0
x_{12} x_{20} -x_{12} x_{19} = 0
x_{4} x_{26} -x_{4} x_{25} = 0
x_{5} x_{26} -x_{5} x_{24} = 0
x_{6} x_{25} -x_{6} x_{24} = 0
x_{10} x_{26} -x_{10} x_{25} = 0
x_{11} x_{26} -x_{11} x_{24} = 0
x_{12} x_{25} -x_{12} x_{24} = 0
The above system after transformation.
1/2x_{15}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{27}^{2}x_{28} +x_{14}^{2}x_{21}^{2}x_{27}^{2}x_{28}
-x_{13} x_{14} x_{21}^{2}x_{27}^{2}x_{28} +x_{13}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{15} x_{16} x_{20} x_{21} x_{27}^{2}x_{28}
+x_{14} x_{16} x_{20} x_{21} x_{27}^{2}x_{28} +x_{14} x_{15} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{14}^{2}x_{20} x_{21} x_{27}^{2}x_{28}
+2x_{13} x_{14} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{13}^{2}x_{20} x_{21} x_{27}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{27}^{2}x_{28}
-2x_{14} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} +x_{13} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} -x_{15}^{2}x_{19} x_{21} x_{27}^{2}x_{28}
+2x_{14} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} -x_{13} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} +x_{14} x_{16} x_{18} x_{21} x_{27}^{2}x_{28}
-2x_{13} x_{16} x_{18} x_{21} x_{27}^{2}x_{28} -x_{14} x_{15} x_{18} x_{21} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{21} x_{27}^{2}x_{28}
+1/2x_{16}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{14} x_{16} x_{20}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{20}^{2}x_{27}^{2}x_{28}
-2x_{13} x_{14} x_{20}^{2}x_{27}^{2}x_{28} +2x_{13}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{16}^{2}x_{19} x_{20} x_{27}^{2}x_{28}
+x_{15} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{14} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} -x_{13} x_{16} x_{19} x_{20} x_{27}^{2}x_{28}
-3x_{14} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +x_{13} x_{14} x_{19} x_{20} x_{27}^{2}x_{28}
-2x_{13}^{2}x_{19} x_{20} x_{27}^{2}x_{28} -x_{14} x_{16} x_{18} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{20} x_{27}^{2}x_{28}
+2x_{14} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -4x_{13} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -x_{14}^{2}x_{18} x_{20} x_{27}^{2}x_{28}
+2x_{13} x_{14} x_{18} x_{20} x_{27}^{2}x_{28} +x_{16}^{2}x_{19}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{19}^{2}x_{27}^{2}x_{28}
+3/2x_{15}^{2}x_{19}^{2}x_{27}^{2}x_{28} -x_{13} x_{15} x_{19}^{2}x_{27}^{2}x_{28} +3/2x_{13}^{2}x_{19}^{2}x_{27}^{2}x_{28}
-x_{16}^{2}x_{18} x_{19} x_{27}^{2}x_{28} +2x_{15} x_{16} x_{18} x_{19} x_{27}^{2}x_{28} -2x_{15}^{2}x_{18} x_{19} x_{27}^{2}x_{28}
+x_{14} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} -3x_{13} x_{14} x_{18} x_{19} x_{27}^{2}x_{28}
+x_{16}^{2}x_{18}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{18}^{2}x_{27}^{2}x_{28} +2x_{15}^{2}x_{18}^{2}x_{27}^{2}x_{28}
-2x_{14} x_{15} x_{18}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{18}^{2}x_{27}^{2}x_{28} -x_{15}^{2}x_{21} x_{22} x_{26} x_{27} x_{28}
+2x_{14} x_{15} x_{21} x_{22} x_{26} x_{27} x_{28} -2x_{14}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{21} x_{22} x_{26} x_{27} x_{28}
-2x_{13}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +x_{15} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28}
-x_{14} x_{15} x_{20} x_{22} x_{26} x_{27} x_{28} +2x_{14}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{26} x_{27} x_{28}
+2x_{13}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28}
-x_{13} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +x_{15}^{2}x_{19} x_{22} x_{26} x_{27} x_{28} -2x_{14} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28}
+x_{13} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28}
+x_{14} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28}
+x_{15} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -1/2x_{14} x_{15} x_{20} x_{21} x_{26} x_{27} x_{28}
+x_{14}^{2}x_{20} x_{21} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{26} x_{27} x_{28} +x_{13}^{2}x_{20} x_{21} x_{26} x_{27} x_{28}
-x_{15} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +2x_{14} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28}
-x_{13} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +1/2x_{15}^{2}x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28}
+1/2x_{13} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28}
+2x_{13} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28}
-x_{13} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28} -x_{16} x_{17} x_{20}^{2}x_{26} x_{27} x_{28} +x_{14} x_{17} x_{20}^{2}x_{26} x_{27} x_{28}
+1/2x_{14} x_{16} x_{20}^{2}x_{26} x_{27} x_{28} -3/2x_{14}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{20}^{2}x_{26} x_{27} x_{28}
-2x_{13}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{15} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28}
-2x_{14} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28}
-1/2x_{15} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28}
+1/2x_{13} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28}
-2x_{13} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{20} x_{26} x_{27} x_{28}
+2x_{13}^{2}x_{19} x_{20} x_{26} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28}
+1/2x_{14} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28}
-2x_{14} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28}
+x_{14}^{2}x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{19}^{2}x_{26} x_{27} x_{28}
+2x_{15} x_{17} x_{19}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{15}^{2}x_{19}^{2}x_{26} x_{27} x_{28}
+x_{13} x_{15} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{13}^{2}x_{19}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{19} x_{26} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{19} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28}
+3x_{13} x_{14} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{18}^{2}x_{26} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{26} x_{27} x_{28}
+x_{15} x_{16} x_{18}^{2}x_{26} x_{27} x_{28} -2x_{15}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +2x_{14} x_{15} x_{18}^{2}x_{26} x_{27} x_{28}
-3/2x_{14}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28}
-x_{14} x_{15} x_{21} x_{22} x_{25} x_{27} x_{28} +2x_{14}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{25} x_{27} x_{28}
+2x_{13}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -x_{16}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{25} x_{27} x_{28}
-3x_{14}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{14} x_{20} x_{22} x_{25} x_{27} x_{28} -4x_{13}^{2}x_{20} x_{22} x_{25} x_{27} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} -2x_{14} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28}
-2x_{13} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{22} x_{25} x_{27} x_{28}
+2x_{13}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28}
-2x_{14} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28}
+x_{14}^{2}x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{17} x_{21}^{2}x_{25} x_{27} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{25} x_{27} x_{28} +1/2x_{14} x_{15} x_{21}^{2}x_{25} x_{27} x_{28} -x_{14}^{2}x_{21}^{2}x_{25} x_{27} x_{28}
+x_{13} x_{14} x_{21}^{2}x_{25} x_{27} x_{28} -x_{13}^{2}x_{21}^{2}x_{25} x_{27} x_{28} +x_{16} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28}
-x_{14} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{25} x_{27} x_{28}
+3/2x_{14}^{2}x_{20} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{21} x_{25} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{21} x_{25} x_{27} x_{28}
-x_{16} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28}
-2x_{14} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28}
-1/2x_{15} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28}
-x_{13} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} -3/2x_{14} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28}
+x_{13} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28} +1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{27} x_{28}
-x_{13}^{2}x_{19} x_{21} x_{25} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28}
-x_{14} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28}
+x_{14} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28}
-1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{14} x_{18} x_{21} x_{25} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28}
+3x_{14} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28}
+1/2x_{16}^{2}x_{19} x_{20} x_{25} x_{27} x_{28} -3/2x_{14} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28}
+4x_{13} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28}
-2x_{13} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -3x_{15} x_{17} x_{19}^{2}x_{25} x_{27} x_{28}
+x_{13} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{19}^{2}x_{25} x_{27} x_{28} +3/2x_{15} x_{16} x_{19}^{2}x_{25} x_{27} x_{28}
-1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} +4x_{15} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28}
-x_{14} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28}
+x_{16}^{2}x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28}
+x_{13} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -4x_{15} x_{17} x_{18}^{2}x_{25} x_{27} x_{28}
+2x_{14} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{18}^{2}x_{25} x_{27} x_{28} +2x_{15} x_{16} x_{18}^{2}x_{25} x_{27} x_{28}
-x_{14} x_{16} x_{18}^{2}x_{25} x_{27} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +2x_{14} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28}
-x_{13} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{15}^{2}x_{21} x_{22} x_{24} x_{27} x_{28} -2x_{14} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28}
+x_{13} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28}
-2x_{14} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28}
+3x_{14} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28}
-x_{13} x_{14} x_{20} x_{22} x_{24} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{16}^{2}x_{19} x_{22} x_{24} x_{27} x_{28}
+4x_{15} x_{16} x_{19} x_{22} x_{24} x_{27} x_{28} -3x_{15}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +2x_{13} x_{15} x_{19} x_{22} x_{24} x_{27} x_{28}
-3x_{13}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{24} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28}
+3x_{13} x_{14} x_{18} x_{22} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -2x_{14} x_{17} x_{21}^{2}x_{24} x_{27} x_{28}
+x_{13} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -1/2x_{15}^{2}x_{21}^{2}x_{24} x_{27} x_{28} +x_{14} x_{15} x_{21}^{2}x_{24} x_{27} x_{28}
-1/2x_{13} x_{15} x_{21}^{2}x_{24} x_{27} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28}
+4x_{14} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28}
+x_{15} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28}
-3/2x_{14} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28}
+1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{13}^{2}x_{20} x_{21} x_{24} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28}
-2x_{15} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{21} x_{24} x_{27} x_{28}
+3/2x_{15}^{2}x_{19} x_{21} x_{24} x_{27} x_{28} -x_{13} x_{15} x_{19} x_{21} x_{24} x_{27} x_{28} +3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{27} x_{28}
-x_{16} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{21} x_{24} x_{27} x_{28}
-x_{15}^{2}x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28}
-3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{20}^{2}x_{24} x_{27} x_{28}
+2x_{13} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{20}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{20}^{2}x_{24} x_{27} x_{28}
-x_{13} x_{16} x_{20}^{2}x_{24} x_{27} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +3x_{15} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28}
-x_{13} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16}^{2}x_{19} x_{20} x_{24} x_{27} x_{28} -3/2x_{15} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28}
+1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} +2x_{14} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28}
-2x_{13} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24} x_{27} x_{28} +x_{15} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28}
-x_{14} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28}
+3x_{13} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28}
-3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{18}^{2}x_{24} x_{27} x_{28}
-x_{15} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28}
+2x_{13} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28}
-2x_{13} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28}
-2x_{13} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28}
+4x_{13} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28} +x_{14}^{2}x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{23} x_{27} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{19} x_{22} x_{23} x_{27} x_{28} +2x_{15}^{2}x_{19} x_{22} x_{23} x_{27} x_{28}
-x_{14} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28}
+3x_{13} x_{14} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{16}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{15} x_{16} x_{18} x_{22} x_{23} x_{27} x_{28}
-4x_{15}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{14} x_{15} x_{18} x_{22} x_{23} x_{27} x_{28} -3x_{14}^{2}x_{18} x_{22} x_{23} x_{27} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{13} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{27} x_{28}
+x_{13} x_{15} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28}
+1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{13} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28}
+x_{14} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28}
-1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{14} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28}
+x_{15} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{27} x_{28}
-x_{15}^{2}x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28}
-3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28}
-2x_{15} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{21} x_{23} x_{27} x_{28}
+2x_{15}^{2}x_{18} x_{21} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{18} x_{21} x_{23} x_{27} x_{28} +3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{27} x_{28}
+2x_{14} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -4x_{13} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -x_{14} x_{16} x_{20}^{2}x_{23} x_{27} x_{28}
+2x_{13} x_{16} x_{20}^{2}x_{23} x_{27} x_{28} +x_{16} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28}
-x_{14} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28}
-1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{27} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} +1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28}
-2x_{13} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28}
+4x_{15} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28}
+x_{16}^{2}x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28}
+x_{15} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -3x_{13} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{27} x_{28}
+3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28} +3x_{14} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28}
+x_{15} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28} -3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28}
+1/2x_{15}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{14} x_{15} x_{22}^{2}x_{26}^{2}x_{28} +x_{14}^{2}x_{22}^{2}x_{26}^{2}x_{28}
-x_{13} x_{14} x_{22}^{2}x_{26}^{2}x_{28} +x_{13}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{20} x_{22} x_{26}^{2}x_{28}
+x_{14} x_{17} x_{20} x_{22} x_{26}^{2}x_{28} +1/2x_{14} x_{15} x_{20} x_{22} x_{26}^{2}x_{28} -x_{14}^{2}x_{20} x_{22} x_{26}^{2}x_{28}
+x_{13} x_{14} x_{20} x_{22} x_{26}^{2}x_{28} -x_{13}^{2}x_{20} x_{22} x_{26}^{2}x_{28} +x_{15} x_{17} x_{19} x_{22} x_{26}^{2}x_{28}
-2x_{14} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} +x_{13} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{15}^{2}x_{19} x_{22} x_{26}^{2}x_{28}
+x_{14} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} +x_{14} x_{17} x_{18} x_{22} x_{26}^{2}x_{28}
-2x_{13} x_{17} x_{18} x_{22} x_{26}^{2}x_{28} -1/2x_{14} x_{15} x_{18} x_{22} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{22} x_{26}^{2}x_{28}
+1/2x_{17}^{2}x_{20}^{2}x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{20}^{2}x_{26}^{2}x_{28} +1/2x_{14}^{2}x_{20}^{2}x_{26}^{2}x_{28}
-3/4x_{13} x_{14} x_{20}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{20}^{2}x_{26}^{2}x_{28} -x_{17}^{2}x_{19} x_{20} x_{26}^{2}x_{28}
+1/2x_{15} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} +x_{14} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{13} x_{17} x_{19} x_{20} x_{26}^{2}x_{28}
-x_{14} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +3/4x_{13} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +1/2x_{13} x_{14} x_{19} x_{20} x_{26}^{2}x_{28}
-x_{13}^{2}x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{18} x_{20} x_{26}^{2}x_{28} +x_{13} x_{17} x_{18} x_{20} x_{26}^{2}x_{28}
+3/4x_{14} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -3/2x_{13} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -1/2x_{14}^{2}x_{18} x_{20} x_{26}^{2}x_{28}
+x_{13} x_{14} x_{18} x_{20} x_{26}^{2}x_{28} +x_{17}^{2}x_{19}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{19}^{2}x_{26}^{2}x_{28}
+1/2x_{15}^{2}x_{19}^{2}x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{19}^{2}x_{26}^{2}x_{28}
-x_{17}^{2}x_{18} x_{19} x_{26}^{2}x_{28} +x_{15} x_{17} x_{18} x_{19} x_{26}^{2}x_{28} -3/4x_{15}^{2}x_{18} x_{19} x_{26}^{2}x_{28}
+1/2x_{14} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} -3/2x_{13} x_{14} x_{18} x_{19} x_{26}^{2}x_{28}
+x_{17}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{15}^{2}x_{18}^{2}x_{26}^{2}x_{28}
-x_{14} x_{15} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{14}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{16} x_{22}^{2}x_{25} x_{26} x_{28}
+x_{14} x_{16} x_{22}^{2}x_{25} x_{26} x_{28} +x_{14} x_{15} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{14}^{2}x_{22}^{2}x_{25} x_{26} x_{28}
+2x_{13} x_{14} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{13}^{2}x_{22}^{2}x_{25} x_{26} x_{28} +x_{15} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{15} x_{21} x_{22} x_{25} x_{26} x_{28}
+x_{14}^{2}x_{21} x_{22} x_{25} x_{26} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{25} x_{26} x_{28} +x_{13}^{2}x_{21} x_{22} x_{25} x_{26} x_{28}
+x_{16} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{20} x_{22} x_{25} x_{26} x_{28}
+3/2x_{14}^{2}x_{20} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{25} x_{26} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{25} x_{26} x_{28}
-x_{16} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{15} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +4x_{14} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28}
-2x_{13} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28}
-x_{14} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28}
-3/2x_{14} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28}
+1/2x_{13} x_{14} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{13}^{2}x_{19} x_{22} x_{25} x_{26} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28}
+4x_{13} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28} +x_{14} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28}
-1/2x_{14}^{2}x_{18} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{14} x_{18} x_{22} x_{25} x_{26} x_{28} -x_{17}^{2}x_{20} x_{21} x_{25} x_{26} x_{28}
+x_{14} x_{17} x_{20} x_{21} x_{25} x_{26} x_{28} -x_{14}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{25} x_{26} x_{28}
-3/2x_{13}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} -1/2x_{15} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{13} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28}
+x_{14} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28}
-1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{26} x_{28} +x_{13}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28}
-x_{13} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28}
+3/2x_{13} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28} +1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{26} x_{28}
-x_{13} x_{14} x_{18} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{20} x_{25} x_{26} x_{28} -1/2x_{16} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28}
-3/2x_{14} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28}
+x_{14} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28}
-1/4x_{13} x_{14} x_{19} x_{20} x_{25} x_{26} x_{28} +1/2x_{13}^{2}x_{19} x_{20} x_{25} x_{26} x_{28}
+x_{14} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28}
-3/4x_{14} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28}
+1/4x_{14}^{2}x_{18} x_{20} x_{25} x_{26} x_{28} -1/2x_{13} x_{14} x_{18} x_{20} x_{25} x_{26} x_{28}
-2x_{17}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} +3/2x_{15} x_{17} x_{19}^{2}x_{25} x_{26} x_{28}
-1/2x_{13} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} -x_{15} x_{16} x_{19}^{2}x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{26} x_{28}
+1/4x_{13} x_{15} x_{19}^{2}x_{25} x_{26} x_{28} -3/4x_{13}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{25} x_{26} x_{28}
-x_{16} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28}
+1/2x_{14} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28}
+3/2x_{15} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28}
-1/2x_{13} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{18} x_{19} x_{25} x_{26} x_{28}
-2x_{17}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{25} x_{26} x_{28}
-x_{14} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} -3/2x_{15} x_{16} x_{18}^{2}x_{25} x_{26} x_{28} +x_{14} x_{16} x_{18}^{2}x_{25} x_{26} x_{28}
+1/2x_{14} x_{15} x_{18}^{2}x_{25} x_{26} x_{28} -3/4x_{14}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{15} x_{16} x_{22}^{2}x_{24} x_{26} x_{28}
-2x_{14} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} +x_{13} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15}^{2}x_{22}^{2}x_{24} x_{26} x_{28}
+2x_{14} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{13} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28}
+2x_{14} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28}
+1/2x_{15}^{2}x_{21} x_{22} x_{24} x_{26} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28}
-x_{16} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28}
-2x_{14} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28}
-1/2x_{15} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28}
-x_{13} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} -3/2x_{14} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{14} x_{20} x_{22} x_{24} x_{26} x_{28}
-x_{13}^{2}x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{16} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28} -2x_{15} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28}
-x_{15} x_{16} x_{19} x_{22} x_{24} x_{26} x_{28} +3/2x_{15}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{19} x_{22} x_{24} x_{26} x_{28}
+3/2x_{13}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28}
+1/2x_{15} x_{16} x_{18} x_{22} x_{24} x_{26} x_{28} -x_{15}^{2}x_{18} x_{22} x_{24} x_{26} x_{28} +1/2x_{14} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28} -3/2x_{13} x_{14} x_{18} x_{22} x_{24} x_{26} x_{28}
+x_{17}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{15} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28}
+1/2x_{13} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} +x_{14} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28}
-3/4x_{13} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{26} x_{28}
+x_{13}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -2x_{17}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{24} x_{26} x_{28}
-x_{15}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{24} x_{26} x_{28} -3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{26} x_{28}
+x_{17}^{2}x_{18} x_{21} x_{24} x_{26} x_{28} -x_{15} x_{17} x_{18} x_{21} x_{24} x_{26} x_{28} +3/4x_{15}^{2}x_{18} x_{21} x_{24} x_{26} x_{28}
-1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28}
+3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{17}^{2}x_{20}^{2}x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{20}^{2}x_{24} x_{26} x_{28}
+3/2x_{14} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{13} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{14} x_{16} x_{20}^{2}x_{24} x_{26} x_{28}
+3/4x_{13} x_{16} x_{20}^{2}x_{24} x_{26} x_{28} +1/4x_{13} x_{14} x_{20}^{2}x_{24} x_{26} x_{28} -1/2x_{13}^{2}x_{20}^{2}x_{24} x_{26} x_{28}
+2x_{17}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} -3/2x_{15} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28}
+1/2x_{13} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28}
-1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28} -1/4x_{13} x_{15} x_{19} x_{20} x_{24} x_{26} x_{28}
+3/4x_{13}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{17}^{2}x_{18} x_{20} x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28}
+x_{15} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28}
-3/4x_{15} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28}
-x_{13} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28}
+x_{13} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28} -3/4x_{13} x_{14} x_{18} x_{20} x_{24} x_{26} x_{28}
+1/2x_{15} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28} -3/2x_{13} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28}
-1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28}
+1/4x_{15}^{2}x_{18} x_{19} x_{24} x_{26} x_{28} -3/4x_{13} x_{15} x_{18} x_{19} x_{24} x_{26} x_{28}
-x_{15} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +3/2x_{14} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +x_{15} x_{16} x_{18}^{2}x_{24} x_{26} x_{28}
-3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{26} x_{28} -1/2x_{15}^{2}x_{18}^{2}x_{24} x_{26} x_{28} +3/4x_{14} x_{15} x_{18}^{2}x_{24} x_{26} x_{28}
+x_{14} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -2x_{13} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{15} x_{22}^{2}x_{23} x_{26} x_{28}
+2x_{13} x_{15} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28}
+1/2x_{14} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28} -x_{13} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28}
+x_{14} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28}
-x_{14} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28}
+x_{14} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28}
-1/2x_{14}^{2}x_{20} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{14} x_{20} x_{22} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28}
+x_{15} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{26} x_{28}
-x_{15}^{2}x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28}
-3/2x_{13} x_{14} x_{19} x_{22} x_{23} x_{26} x_{28} +2x_{16} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28}
-2x_{15} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28} -x_{15} x_{16} x_{18} x_{22} x_{23} x_{26} x_{28}
+2x_{15}^{2}x_{18} x_{22} x_{23} x_{26} x_{28} -2x_{14} x_{15} x_{18} x_{22} x_{23} x_{26} x_{28} +3/2x_{14}^{2}x_{18} x_{22} x_{23} x_{26} x_{28}
+1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28}
-3/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28}
+1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{23} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{23} x_{26} x_{28}
-x_{15} x_{17} x_{19} x_{21} x_{23} x_{26} x_{28} +3/4x_{15}^{2}x_{19} x_{21} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28}
-x_{13} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{26} x_{28}
-2x_{17}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} +2x_{15} x_{17} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{15}^{2}x_{18} x_{21} x_{23} x_{26} x_{28}
+2x_{14} x_{15} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} -x_{14} x_{17} x_{20}^{2}x_{23} x_{26} x_{28}
+2x_{13} x_{17} x_{20}^{2}x_{23} x_{26} x_{28} +3/4x_{14} x_{16} x_{20}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{20}^{2}x_{23} x_{26} x_{28}
-1/4x_{14}^{2}x_{20}^{2}x_{23} x_{26} x_{28} +1/2x_{13} x_{14} x_{20}^{2}x_{23} x_{26} x_{28} -x_{17}^{2}x_{19} x_{20} x_{23} x_{26} x_{28}
+1/2x_{16} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} +x_{15} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28}
+1/2x_{14} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28}
-3/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28}
+2x_{13} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28}
-1/2x_{13} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28} -3/4x_{13} x_{14} x_{19} x_{20} x_{23} x_{26} x_{28}
+2x_{17}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28}
+x_{14} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} +3/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28}
-x_{14} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{18} x_{20} x_{23} x_{26} x_{28}
+3/4x_{14}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{15} x_{17} x_{19}^{2}x_{23} x_{26} x_{28} +3/2x_{13} x_{17} x_{19}^{2}x_{23} x_{26} x_{28}
+1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -1/4x_{15}^{2}x_{19}^{2}x_{23} x_{26} x_{28}
+3/4x_{13} x_{15} x_{19}^{2}x_{23} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28} -3/2x_{14} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28}
-x_{15} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28} +3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28}
+1/2x_{15}^{2}x_{18} x_{19} x_{23} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{19} x_{23} x_{26} x_{28}
+1/2x_{16}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{14} x_{16} x_{22}^{2}x_{25}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{25}^{2}x_{28}
-2x_{13} x_{14} x_{22}^{2}x_{25}^{2}x_{28} +2x_{13}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{16} x_{17} x_{21} x_{22} x_{25}^{2}x_{28}
+x_{14} x_{17} x_{21} x_{22} x_{25}^{2}x_{28} +1/2x_{14} x_{16} x_{21} x_{22} x_{25}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{25}^{2}x_{28}
+2x_{13} x_{14} x_{21} x_{22} x_{25}^{2}x_{28} -2x_{13}^{2}x_{21} x_{22} x_{25}^{2}x_{28} +x_{16} x_{17} x_{19} x_{22} x_{25}^{2}x_{28}
-3x_{14} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{25}^{2}x_{28}
+3/2x_{14} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} -x_{13} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{14} x_{17} x_{18} x_{22} x_{25}^{2}x_{28}
-4x_{13} x_{17} x_{18} x_{22} x_{25}^{2}x_{28} -x_{14} x_{16} x_{18} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{25}^{2}x_{28}
+1/2x_{17}^{2}x_{21}^{2}x_{25}^{2}x_{28} -1/2x_{14} x_{17} x_{21}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{21}^{2}x_{25}^{2}x_{28}
-3/4x_{13} x_{14} x_{21}^{2}x_{25}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{25}^{2}x_{28} -x_{17}^{2}x_{19} x_{21} x_{25}^{2}x_{28}
+1/2x_{16} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} +3/2x_{14} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} -x_{13} x_{17} x_{19} x_{21} x_{25}^{2}x_{28}
-x_{14} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +3/4x_{13} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +1/4x_{13} x_{14} x_{19} x_{21} x_{25}^{2}x_{28}
-1/2x_{13}^{2}x_{19} x_{21} x_{25}^{2}x_{28} -x_{14} x_{17} x_{18} x_{21} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{18} x_{21} x_{25}^{2}x_{28}
+3/4x_{14} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -1/4x_{14}^{2}x_{18} x_{21} x_{25}^{2}x_{28}
+1/2x_{13} x_{14} x_{18} x_{21} x_{25}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{25}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{25}^{2}x_{28}
+1/2x_{16}^{2}x_{19}^{2}x_{25}^{2}x_{28} -1/4x_{13} x_{16} x_{19}^{2}x_{25}^{2}x_{28} +1/2x_{13}^{2}x_{19}^{2}x_{25}^{2}x_{28}
-2x_{17}^{2}x_{18} x_{19} x_{25}^{2}x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{25}^{2}x_{28} -3/4x_{16}^{2}x_{18} x_{19} x_{25}^{2}x_{28}
+1/4x_{14} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} +1/2x_{13} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} -x_{13} x_{14} x_{18} x_{19} x_{25}^{2}x_{28}
+2x_{17}^{2}x_{18}^{2}x_{25}^{2}x_{28} -2x_{16} x_{17} x_{18}^{2}x_{25}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{25}^{2}x_{28}
-1/2x_{14} x_{16} x_{18}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{18}^{2}x_{25}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{24} x_{25} x_{28}
+x_{15} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{14} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} -x_{13} x_{16} x_{22}^{2}x_{24} x_{25} x_{28}
-3x_{14} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{13} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +x_{13} x_{14} x_{22}^{2}x_{24} x_{25} x_{28}
-2x_{13}^{2}x_{22}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28}
-2x_{14} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} +x_{13} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28}
-1/2x_{15} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28}
+1/2x_{13} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{24} x_{25} x_{28}
+2x_{13}^{2}x_{21} x_{22} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +1/2x_{16}^{2}x_{20} x_{22} x_{24} x_{25} x_{28} -3/2x_{14} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28}
+x_{13} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28}
+3x_{15} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28}
+x_{16}^{2}x_{19} x_{22} x_{24} x_{25} x_{28} -3/2x_{15} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28}
+x_{16} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28}
-x_{14} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} +4x_{13} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28}
-1/2x_{16}^{2}x_{18} x_{22} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28}
-2x_{13} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} -x_{17}^{2}x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{15} x_{17} x_{21}^{2}x_{24} x_{25} x_{28}
+x_{14} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -1/2x_{13} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{21}^{2}x_{24} x_{25} x_{28}
+3/4x_{13} x_{15} x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{13} x_{14} x_{21}^{2}x_{24} x_{25} x_{28} -x_{13}^{2}x_{21}^{2}x_{24} x_{25} x_{28}
+x_{17}^{2}x_{20} x_{21} x_{24} x_{25} x_{28} -1/2x_{16} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} -3/2x_{14} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28}
+x_{13} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28} -3/4x_{13} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28}
-1/4x_{13} x_{14} x_{20} x_{21} x_{24} x_{25} x_{28} +1/2x_{13}^{2}x_{20} x_{21} x_{24} x_{25} x_{28}
+2x_{17}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} -3/2x_{15} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28}
+1/2x_{13} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28}
-1/2x_{13} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28} -1/4x_{13} x_{15} x_{19} x_{21} x_{24} x_{25} x_{28}
+3/4x_{13}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{17}^{2}x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{16} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28}
+x_{15} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28}
-2x_{13} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} -3/4x_{15} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28}
-1/2x_{14} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28}
+1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28} -1/2x_{13} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28}
-3/4x_{13} x_{14} x_{18} x_{21} x_{24} x_{25} x_{28} -3x_{17}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +3x_{16} x_{17} x_{19} x_{20} x_{24} x_{25} x_{28}
-x_{16}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{25} x_{28} -x_{13}^{2}x_{19} x_{20} x_{24} x_{25} x_{28}
+2x_{17}^{2}x_{18} x_{20} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{24} x_{25} x_{28} +3/4x_{16}^{2}x_{18} x_{20} x_{24} x_{25} x_{28}
-1/4x_{14} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28} -1/2x_{13} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28}
+x_{13} x_{14} x_{18} x_{20} x_{24} x_{25} x_{28} +x_{17}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{19} x_{24} x_{25} x_{28}
+1/2x_{16}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -1/4x_{15} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28}
-3/4x_{13} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28} +x_{13} x_{15} x_{18} x_{19} x_{24} x_{25} x_{28}
-2x_{17}^{2}x_{18}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{24} x_{25} x_{28} -x_{16}^{2}x_{18}^{2}x_{24} x_{25} x_{28}
+1/2x_{15} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} +3/4x_{14} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{18}^{2}x_{24} x_{25} x_{28}
-x_{14} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{14} x_{15} x_{22}^{2}x_{23} x_{25} x_{28}
-4x_{13} x_{15} x_{22}^{2}x_{23} x_{25} x_{28} -x_{14}^{2}x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{14} x_{22}^{2}x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28}
+1/2x_{14} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28}
-2x_{14} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28} +4x_{13} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28}
+x_{14}^{2}x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28}
+4x_{13} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28}
-2x_{13} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{16} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28}
-2x_{15} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} +2x_{14} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28}
-2x_{13} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{23} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28}
-x_{14} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} +x_{13} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28}
+4x_{15} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28}
+x_{16}^{2}x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28}
-1/2x_{14} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +3/4x_{14} x_{15} x_{21}^{2}x_{23} x_{25} x_{28}
-3/2x_{13} x_{15} x_{21}^{2}x_{23} x_{25} x_{28} -1/2x_{14}^{2}x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{14} x_{21}^{2}x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28}
-3/4x_{14} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28} +3/2x_{13} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28}
+1/4x_{14}^{2}x_{20} x_{21} x_{23} x_{25} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{25} x_{28}
-x_{17}^{2}x_{19} x_{21} x_{23} x_{25} x_{28} +1/2x_{16} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{15} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28}
-x_{14} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{15} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28}
+x_{14} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -1/4x_{14} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28}
+x_{13} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{13} x_{14} x_{19} x_{21} x_{23} x_{25} x_{28}
+2x_{17}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28}
+x_{14} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} +3/2x_{15} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28}
-x_{14} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28} -1/2x_{14} x_{15} x_{18} x_{21} x_{23} x_{25} x_{28}
+3/4x_{14}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} +2x_{17}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{23} x_{25} x_{28}
+3/4x_{16}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -1/4x_{14} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28}
-1/2x_{13} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28} +x_{13} x_{14} x_{19} x_{20} x_{23} x_{25} x_{28}
-4x_{17}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} +4x_{16} x_{17} x_{18} x_{20} x_{23} x_{25} x_{28} -3/2x_{16}^{2}x_{18} x_{20} x_{23} x_{25} x_{28}
+x_{14} x_{16} x_{18} x_{20} x_{23} x_{25} x_{28} -x_{14}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} -x_{17}^{2}x_{19}^{2}x_{23} x_{25} x_{28}
+x_{16} x_{17} x_{19}^{2}x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19}^{2}x_{23} x_{25} x_{28} +1/4x_{15} x_{16} x_{19}^{2}x_{23} x_{25} x_{28}
+3/4x_{13} x_{16} x_{19}^{2}x_{23} x_{25} x_{28} -x_{13} x_{15} x_{19}^{2}x_{23} x_{25} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{23} x_{25} x_{28}
-2x_{16} x_{17} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{16}^{2}x_{18} x_{19} x_{23} x_{25} x_{28} -1/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28}
-3/4x_{14} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{14} x_{15} x_{18} x_{19} x_{23} x_{25} x_{28}
+x_{16}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{15}^{2}x_{22}^{2}x_{24}^{2}x_{28}
-x_{13} x_{15} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{13}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{16} x_{17} x_{21} x_{22} x_{24}^{2}x_{28}
+2x_{15} x_{17} x_{21} x_{22} x_{24}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{15}^{2}x_{21} x_{22} x_{24}^{2}x_{28}
+x_{13} x_{15} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{13}^{2}x_{21} x_{22} x_{24}^{2}x_{28} +2x_{16} x_{17} x_{20} x_{22} x_{24}^{2}x_{28}
-3x_{15} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} -x_{16}^{2}x_{20} x_{22} x_{24}^{2}x_{28}
+3/2x_{15} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} -1/2x_{13} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24}^{2}x_{28}
-3x_{13} x_{17} x_{18} x_{22} x_{24}^{2}x_{28} -1/2x_{15} x_{16} x_{18} x_{22} x_{24}^{2}x_{28} +3/2x_{13} x_{16} x_{18} x_{22} x_{24}^{2}x_{28}
+x_{17}^{2}x_{21}^{2}x_{24}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{21}^{2}x_{24}^{2}x_{28}
-1/2x_{13} x_{15} x_{21}^{2}x_{24}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{24}^{2}x_{28} -2x_{17}^{2}x_{20} x_{21} x_{24}^{2}x_{28}
+x_{16} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} +3/2x_{15} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{13} x_{17} x_{20} x_{21} x_{24}^{2}x_{28}
-x_{15} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/4x_{13} x_{15} x_{20} x_{21} x_{24}^{2}x_{28}
-3/4x_{13}^{2}x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{15} x_{17} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{13} x_{17} x_{18} x_{21} x_{24}^{2}x_{28}
+1/2x_{15} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -1/4x_{15}^{2}x_{18} x_{21} x_{24}^{2}x_{28}
+3/4x_{13} x_{15} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{17}^{2}x_{20}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{20}^{2}x_{24}^{2}x_{28}
+1/2x_{16}^{2}x_{20}^{2}x_{24}^{2}x_{28} -1/4x_{13} x_{16} x_{20}^{2}x_{24}^{2}x_{28} +1/2x_{13}^{2}x_{20}^{2}x_{24}^{2}x_{28}
-x_{17}^{2}x_{18} x_{20} x_{24}^{2}x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24}^{2}x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24}^{2}x_{28}
+1/4x_{15} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} +3/4x_{13} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} -x_{13} x_{15} x_{18} x_{20} x_{24}^{2}x_{28}
+3/2x_{17}^{2}x_{18}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{18}^{2}x_{24}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{24}^{2}x_{28}
-3/4x_{15} x_{16} x_{18}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{18}^{2}x_{24}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{23} x_{24} x_{28}
+2x_{15} x_{16} x_{22}^{2}x_{23} x_{24} x_{28} -2x_{15}^{2}x_{22}^{2}x_{23} x_{24} x_{28} +x_{14} x_{15} x_{22}^{2}x_{23} x_{24} x_{28}
+2x_{13} x_{15} x_{22}^{2}x_{23} x_{24} x_{28} -3x_{13} x_{14} x_{22}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28}
-2x_{15} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{23} x_{24} x_{28}
+2x_{15}^{2}x_{21} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{13} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28}
+3x_{13} x_{14} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28}
+4x_{15} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28}
-2x_{13} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{16}^{2}x_{20} x_{22} x_{23} x_{24} x_{28} -2x_{15} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28}
+1/2x_{14} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28}
-x_{15} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28} +3x_{13} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28}
+1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28} -3/2x_{13} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28}
-2x_{15} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28} +3x_{14} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28}
+x_{15} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28} -3/2x_{14} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28}
-x_{17}^{2}x_{21}^{2}x_{23} x_{24} x_{28} +x_{15} x_{17} x_{21}^{2}x_{23} x_{24} x_{28} -3/4x_{15}^{2}x_{21}^{2}x_{23} x_{24} x_{28}
+1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} +x_{13} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} -3/2x_{13} x_{14} x_{21}^{2}x_{23} x_{24} x_{28}
+2x_{17}^{2}x_{20} x_{21} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} -2x_{15} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28}
+1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} +x_{13} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28}
+3/2x_{15} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28}
-x_{13} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28}
-1/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{24} x_{28}
+1/2x_{15} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28} -3/2x_{13} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28}
-1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28}
+1/4x_{15}^{2}x_{19} x_{21} x_{23} x_{24} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{23} x_{24} x_{28}
+x_{15} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28} -3/2x_{14} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28}
-x_{15} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28} +3/2x_{14} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28}
+1/2x_{15}^{2}x_{18} x_{21} x_{23} x_{24} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{23} x_{24} x_{28}
-2x_{17}^{2}x_{20}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{20}^{2}x_{23} x_{24} x_{28} -3/4x_{16}^{2}x_{20}^{2}x_{23} x_{24} x_{28}
+1/4x_{14} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} +1/2x_{13} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} -x_{13} x_{14} x_{20}^{2}x_{23} x_{24} x_{28}
+x_{17}^{2}x_{19} x_{20} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{23} x_{24} x_{28} +1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{24} x_{28}
-1/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28}
+x_{13} x_{15} x_{19} x_{20} x_{23} x_{24} x_{28} +2x_{17}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{24} x_{28}
+x_{16}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -1/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28} -3/4x_{14} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28}
+x_{14} x_{15} x_{18} x_{20} x_{23} x_{24} x_{28} -3x_{17}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3x_{16} x_{17} x_{18} x_{19} x_{23} x_{24} x_{28}
-3/2x_{16}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{24} x_{28}
-x_{15}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +x_{16}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{23}^{2}x_{28}
+2x_{15}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{14} x_{15} x_{22}^{2}x_{23}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{23}^{2}x_{28}
-2x_{16} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{23}^{2}x_{28}
-2x_{15}^{2}x_{21} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{15} x_{21} x_{22} x_{23}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{23}^{2}x_{28}
+2x_{16} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} -4x_{15} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{17} x_{20} x_{22} x_{23}^{2}x_{28}
-x_{16}^{2}x_{20} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{16} x_{20} x_{22} x_{23}^{2}x_{28} -x_{14} x_{16} x_{20} x_{22} x_{23}^{2}x_{28}
+2x_{15} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -3x_{14} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -x_{15} x_{16} x_{19} x_{22} x_{23}^{2}x_{28}
+3/2x_{14} x_{16} x_{19} x_{22} x_{23}^{2}x_{28} +x_{17}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{23}^{2}x_{28}
+3/4x_{15}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{23}^{2}x_{28} +3/4x_{14}^{2}x_{21}^{2}x_{23}^{2}x_{28}
-2x_{17}^{2}x_{20} x_{21} x_{23}^{2}x_{28} +x_{16} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{20} x_{21} x_{23}^{2}x_{28}
-x_{14} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} -3/2x_{15} x_{16} x_{20} x_{21} x_{23}^{2}x_{28} +x_{14} x_{16} x_{20} x_{21} x_{23}^{2}x_{28}
+1/2x_{14} x_{15} x_{20} x_{21} x_{23}^{2}x_{28} -3/4x_{14}^{2}x_{20} x_{21} x_{23}^{2}x_{28} -x_{15} x_{17} x_{19} x_{21} x_{23}^{2}x_{28}
+3/2x_{14} x_{17} x_{19} x_{21} x_{23}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{23}^{2}x_{28} -3/2x_{14} x_{16} x_{19} x_{21} x_{23}^{2}x_{28}
-1/2x_{15}^{2}x_{19} x_{21} x_{23}^{2}x_{28} +3/4x_{14} x_{15} x_{19} x_{21} x_{23}^{2}x_{28} +2x_{17}^{2}x_{20}^{2}x_{23}^{2}x_{28}
-2x_{16} x_{17} x_{20}^{2}x_{23}^{2}x_{28} +3/4x_{16}^{2}x_{20}^{2}x_{23}^{2}x_{28} -1/2x_{14} x_{16} x_{20}^{2}x_{23}^{2}x_{28}
+1/2x_{14}^{2}x_{20}^{2}x_{23}^{2}x_{28} -2x_{17}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{23}^{2}x_{28}
-x_{16}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +1/2x_{15} x_{16} x_{19} x_{20} x_{23}^{2}x_{28} +3/4x_{14} x_{16} x_{19} x_{20} x_{23}^{2}x_{28}
-x_{14} x_{15} x_{19} x_{20} x_{23}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{23}^{2}x_{28}
+3/4x_{16}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/4x_{15} x_{16} x_{19}^{2}x_{23}^{2}x_{28} +1/2x_{15}^{2}x_{19}^{2}x_{23}^{2}x_{28}
-1= 0
x_{14} = 0
x_{19} = 0
x_{24} = 0
x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} -2= 0
x_{6} x_{11} +x_{5} x_{10} = 0
x_{5} x_{12} +x_{4} x_{11} = 0
x_{6} x_{12} +x_{5} x_{11} -1= 0
x_{4} x_{16} -x_{4} x_{15} = 0
x_{5} x_{16} -x_{5} x_{14} = 0
x_{6} x_{15} -x_{6} x_{14} = 0
x_{10} x_{16} -x_{10} x_{15} = 0
x_{11} x_{16} -x_{11} x_{14} = 0
x_{12} x_{15} -x_{12} x_{14} = 0
x_{4} x_{21} -x_{4} x_{20} = 0
x_{5} x_{21} -x_{5} x_{19} = 0
x_{6} x_{20} -x_{6} x_{19} = 0
x_{10} x_{21} -x_{10} x_{20} = 0
x_{11} x_{21} -x_{11} x_{19} = 0
x_{12} x_{20} -x_{12} x_{19} = 0
x_{4} x_{26} -x_{4} x_{25} = 0
x_{5} x_{26} -x_{5} x_{24} = 0
x_{6} x_{25} -x_{6} x_{24} = 0
x_{10} x_{26} -x_{10} x_{25} = 0
x_{11} x_{26} -x_{11} x_{24} = 0
x_{12} x_{25} -x_{12} x_{24} = 0
For the calculator:
(DynkinType =2A^{2}_1; ElementsCartan =((2, 4, 4, 4, 2), (0, 0, 2, 4, 2)); generators =(g_{-24}, g_{24}, x_{4} g_{-13}+x_{5} g_{-16}+x_{6} g_{-19}, x_{12} g_{19}+x_{11} g_{16}+x_{10} g_{13}) );
FindOneSolutionSerreLikePolynomialSystem{}( 1/2x_{15}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{27}^{2}x_{28} +x_{14}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{13} x_{14} x_{21}^{2}x_{27}^{2}x_{28} +x_{13}^{2}x_{21}^{2}x_{27}^{2}x_{28} -x_{15} x_{16} x_{20} x_{21} x_{27}^{2}x_{28} +x_{14} x_{16} x_{20} x_{21} x_{27}^{2}x_{28} +x_{14} x_{15} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{14}^{2}x_{20} x_{21} x_{27}^{2}x_{28} +2x_{13} x_{14} x_{20} x_{21} x_{27}^{2}x_{28} -2x_{13}^{2}x_{20} x_{21} x_{27}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} -2x_{14} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} +x_{13} x_{16} x_{19} x_{21} x_{27}^{2}x_{28} -x_{15}^{2}x_{19} x_{21} x_{27}^{2}x_{28} +2x_{14} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} -x_{13} x_{15} x_{19} x_{21} x_{27}^{2}x_{28} +x_{14} x_{16} x_{18} x_{21} x_{27}^{2}x_{28} -2x_{13} x_{16} x_{18} x_{21} x_{27}^{2}x_{28} -x_{14} x_{15} x_{18} x_{21} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{21} x_{27}^{2}x_{28} +1/2x_{16}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{14} x_{16} x_{20}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{20}^{2}x_{27}^{2}x_{28} -2x_{13} x_{14} x_{20}^{2}x_{27}^{2}x_{28} +2x_{13}^{2}x_{20}^{2}x_{27}^{2}x_{28} -x_{16}^{2}x_{19} x_{20} x_{27}^{2}x_{28} +x_{15} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{14} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} -x_{13} x_{16} x_{19} x_{20} x_{27}^{2}x_{28} -3x_{14} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{19} x_{20} x_{27}^{2}x_{28} +x_{13} x_{14} x_{19} x_{20} x_{27}^{2}x_{28} -2x_{13}^{2}x_{19} x_{20} x_{27}^{2}x_{28} -x_{14} x_{16} x_{18} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{20} x_{27}^{2}x_{28} +2x_{14} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -4x_{13} x_{15} x_{18} x_{20} x_{27}^{2}x_{28} -x_{14}^{2}x_{18} x_{20} x_{27}^{2}x_{28} +2x_{13} x_{14} x_{18} x_{20} x_{27}^{2}x_{28} +x_{16}^{2}x_{19}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{19}^{2}x_{27}^{2}x_{28} +3/2x_{15}^{2}x_{19}^{2}x_{27}^{2}x_{28} -x_{13} x_{15} x_{19}^{2}x_{27}^{2}x_{28} +3/2x_{13}^{2}x_{19}^{2}x_{27}^{2}x_{28} -x_{16}^{2}x_{18} x_{19} x_{27}^{2}x_{28} +2x_{15} x_{16} x_{18} x_{19} x_{27}^{2}x_{28} -2x_{15}^{2}x_{18} x_{19} x_{27}^{2}x_{28} +x_{14} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} +2x_{13} x_{15} x_{18} x_{19} x_{27}^{2}x_{28} -3x_{13} x_{14} x_{18} x_{19} x_{27}^{2}x_{28} +x_{16}^{2}x_{18}^{2}x_{27}^{2}x_{28} -2x_{15} x_{16} x_{18}^{2}x_{27}^{2}x_{28} +2x_{15}^{2}x_{18}^{2}x_{27}^{2}x_{28} -2x_{14} x_{15} x_{18}^{2}x_{27}^{2}x_{28} +3/2x_{14}^{2}x_{18}^{2}x_{27}^{2}x_{28} -x_{15}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +2x_{14} x_{15} x_{21} x_{22} x_{26} x_{27} x_{28} -2x_{14}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{21} x_{22} x_{26} x_{27} x_{28} -2x_{13}^{2}x_{21} x_{22} x_{26} x_{27} x_{28} +x_{15} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{20} x_{22} x_{26} x_{27} x_{28} +2x_{14}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{26} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} -x_{13} x_{16} x_{19} x_{22} x_{26} x_{27} x_{28} +x_{15}^{2}x_{19} x_{22} x_{26} x_{27} x_{28} -2x_{14} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{26} x_{27} x_{28} +x_{14} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{26} x_{27} x_{28} +x_{15} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{26} x_{27} x_{28} -1/2x_{14} x_{15} x_{20} x_{21} x_{26} x_{27} x_{28} +x_{14}^{2}x_{20} x_{21} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{26} x_{27} x_{28} +x_{13}^{2}x_{20} x_{21} x_{26} x_{27} x_{28} -x_{15} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +2x_{14} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} -x_{13} x_{17} x_{19} x_{21} x_{26} x_{27} x_{28} +1/2x_{15}^{2}x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28} +1/2x_{13} x_{15} x_{19} x_{21} x_{26} x_{27} x_{28} -x_{14} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28} +2x_{13} x_{17} x_{18} x_{21} x_{26} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28} -x_{13} x_{15} x_{18} x_{21} x_{26} x_{27} x_{28} -x_{16} x_{17} x_{20}^{2}x_{26} x_{27} x_{28} +x_{14} x_{17} x_{20}^{2}x_{26} x_{27} x_{28} +1/2x_{14} x_{16} x_{20}^{2}x_{26} x_{27} x_{28} -3/2x_{14}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{13} x_{14} x_{20}^{2}x_{26} x_{27} x_{28} -2x_{13}^{2}x_{20}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{15} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} -2x_{14} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{26} x_{27} x_{28} -1/2x_{15} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{14} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} +1/2x_{13} x_{16} x_{19} x_{20} x_{26} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{19} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{20} x_{26} x_{27} x_{28} +2x_{13}^{2}x_{19} x_{20} x_{26} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{26} x_{27} x_{28} +1/2x_{14} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28} -x_{13} x_{16} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{14} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{20} x_{26} x_{27} x_{28} +x_{14}^{2}x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{20} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{19}^{2}x_{26} x_{27} x_{28} +2x_{15} x_{17} x_{19}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{15}^{2}x_{19}^{2}x_{26} x_{27} x_{28} +x_{13} x_{15} x_{19}^{2}x_{26} x_{27} x_{28} -3/2x_{13}^{2}x_{19}^{2}x_{26} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{26} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{19} x_{26} x_{27} x_{28} +2x_{15}^{2}x_{18} x_{19} x_{26} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{19} x_{26} x_{27} x_{28} +3x_{13} x_{14} x_{18} x_{19} x_{26} x_{27} x_{28} -2x_{16} x_{17} x_{18}^{2}x_{26} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{18}^{2}x_{26} x_{27} x_{28} -2x_{15}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +2x_{14} x_{15} x_{18}^{2}x_{26} x_{27} x_{28} -3/2x_{14}^{2}x_{18}^{2}x_{26} x_{27} x_{28} +x_{15} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{25} x_{27} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{25} x_{27} x_{28} +2x_{14}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{25} x_{27} x_{28} +2x_{13}^{2}x_{21} x_{22} x_{25} x_{27} x_{28} -x_{16}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{25} x_{27} x_{28} -3x_{14}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{14} x_{20} x_{22} x_{25} x_{27} x_{28} -4x_{13}^{2}x_{20} x_{22} x_{25} x_{27} x_{28} +x_{16}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} -2x_{14} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} +x_{13} x_{16} x_{19} x_{22} x_{25} x_{27} x_{28} +3x_{14} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{15} x_{19} x_{22} x_{25} x_{27} x_{28} -x_{13} x_{14} x_{19} x_{22} x_{25} x_{27} x_{28} +2x_{13}^{2}x_{19} x_{22} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{16} x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{14} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28} +4x_{13} x_{15} x_{18} x_{22} x_{25} x_{27} x_{28} +x_{14}^{2}x_{18} x_{22} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{18} x_{22} x_{25} x_{27} x_{28} -x_{15} x_{17} x_{21}^{2}x_{25} x_{27} x_{28} +x_{14} x_{17} x_{21}^{2}x_{25} x_{27} x_{28} +1/2x_{14} x_{15} x_{21}^{2}x_{25} x_{27} x_{28} -x_{14}^{2}x_{21}^{2}x_{25} x_{27} x_{28} +x_{13} x_{14} x_{21}^{2}x_{25} x_{27} x_{28} -x_{13}^{2}x_{21}^{2}x_{25} x_{27} x_{28} +x_{16} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{25} x_{27} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{25} x_{27} x_{28} +3/2x_{14}^{2}x_{20} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{21} x_{25} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{21} x_{25} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} -2x_{14} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{25} x_{27} x_{28} -1/2x_{15} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} +2x_{14} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} -x_{13} x_{16} x_{19} x_{21} x_{25} x_{27} x_{28} -3/2x_{14} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{25} x_{27} x_{28} +1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{27} x_{28} -x_{13}^{2}x_{19} x_{21} x_{25} x_{27} x_{28} +x_{14} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{21} x_{25} x_{27} x_{28} -x_{14} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{25} x_{27} x_{28} +x_{14} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{21} x_{25} x_{27} x_{28} -1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{27} x_{28} +x_{13} x_{14} x_{18} x_{21} x_{25} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28} +3x_{14} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{25} x_{27} x_{28} +1/2x_{16}^{2}x_{19} x_{20} x_{25} x_{27} x_{28} -3/2x_{14} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28} +x_{13} x_{16} x_{19} x_{20} x_{25} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28} +4x_{13} x_{17} x_{18} x_{20} x_{25} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28} -2x_{13} x_{16} x_{18} x_{20} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -3x_{15} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} +x_{13} x_{17} x_{19}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{19}^{2}x_{25} x_{27} x_{28} +3/2x_{15} x_{16} x_{19}^{2}x_{25} x_{27} x_{28} -1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} +4x_{15} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} -x_{14} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{19} x_{25} x_{27} x_{28} +x_{16}^{2}x_{18} x_{19} x_{25} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +x_{13} x_{16} x_{18} x_{19} x_{25} x_{27} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -4x_{15} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} +2x_{14} x_{17} x_{18}^{2}x_{25} x_{27} x_{28} -x_{16}^{2}x_{18}^{2}x_{25} x_{27} x_{28} +2x_{15} x_{16} x_{18}^{2}x_{25} x_{27} x_{28} -x_{14} x_{16} x_{18}^{2}x_{25} x_{27} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +2x_{14} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} -x_{13} x_{16} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{15}^{2}x_{21} x_{22} x_{24} x_{27} x_{28} -2x_{14} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{21} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{14} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{24} x_{27} x_{28} +3x_{14} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{24} x_{27} x_{28} -x_{13} x_{14} x_{20} x_{22} x_{24} x_{27} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{24} x_{27} x_{28} -2x_{16}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +4x_{15} x_{16} x_{19} x_{22} x_{24} x_{27} x_{28} -3x_{15}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +2x_{13} x_{15} x_{19} x_{22} x_{24} x_{27} x_{28} -3x_{13}^{2}x_{19} x_{22} x_{24} x_{27} x_{28} +x_{16}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{24} x_{27} x_{28} +2x_{15}^{2}x_{18} x_{22} x_{24} x_{27} x_{28} -x_{14} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{24} x_{27} x_{28} +3x_{13} x_{14} x_{18} x_{22} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -2x_{14} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} +x_{13} x_{17} x_{21}^{2}x_{24} x_{27} x_{28} -1/2x_{15}^{2}x_{21}^{2}x_{24} x_{27} x_{28} +x_{14} x_{15} x_{21}^{2}x_{24} x_{27} x_{28} -1/2x_{13} x_{15} x_{21}^{2}x_{24} x_{27} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} +4x_{14} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{24} x_{27} x_{28} +x_{15} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{14} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24} x_{27} x_{28} -3/2x_{14} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{20} x_{21} x_{24} x_{27} x_{28} +1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{27} x_{28} -x_{13}^{2}x_{20} x_{21} x_{24} x_{27} x_{28} +2x_{16} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28} -2x_{15} x_{17} x_{19} x_{21} x_{24} x_{27} x_{28} -x_{15} x_{16} x_{19} x_{21} x_{24} x_{27} x_{28} +3/2x_{15}^{2}x_{19} x_{21} x_{24} x_{27} x_{28} -x_{13} x_{15} x_{19} x_{21} x_{24} x_{27} x_{28} +3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{27} x_{28} -x_{16} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{15} x_{17} x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{21} x_{24} x_{27} x_{28} -x_{15}^{2}x_{18} x_{21} x_{24} x_{27} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{13} x_{15} x_{18} x_{21} x_{24} x_{27} x_{28} -3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} +2x_{13} x_{17} x_{20}^{2}x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{20}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{20}^{2}x_{24} x_{27} x_{28} -x_{13} x_{16} x_{20}^{2}x_{24} x_{27} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +3x_{15} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} -x_{13} x_{17} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16}^{2}x_{19} x_{20} x_{24} x_{27} x_{28} -3/2x_{15} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28} +1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{27} x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} +2x_{14} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{24} x_{27} x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24} x_{27} x_{28} +x_{15} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} -x_{14} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} +x_{13} x_{16} x_{18} x_{20} x_{24} x_{27} x_{28} -x_{15} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28} +3x_{13} x_{17} x_{18} x_{19} x_{24} x_{27} x_{28} +1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28} -3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{27} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{24} x_{27} x_{28} -3x_{14} x_{17} x_{18}^{2}x_{24} x_{27} x_{28} -x_{15} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} +3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{27} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28} +2x_{13} x_{16} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{21} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{16} x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28} +4x_{13} x_{15} x_{20} x_{22} x_{23} x_{27} x_{28} +x_{14}^{2}x_{20} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{23} x_{27} x_{28} +x_{16}^{2}x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{19} x_{22} x_{23} x_{27} x_{28} +2x_{15}^{2}x_{19} x_{22} x_{23} x_{27} x_{28} -x_{14} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{19} x_{22} x_{23} x_{27} x_{28} +3x_{13} x_{14} x_{19} x_{22} x_{23} x_{27} x_{28} -2x_{16}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{15} x_{16} x_{18} x_{22} x_{23} x_{27} x_{28} -4x_{15}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +4x_{14} x_{15} x_{18} x_{22} x_{23} x_{27} x_{28} -3x_{14}^{2}x_{18} x_{22} x_{23} x_{27} x_{28} +x_{14} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{13} x_{17} x_{21}^{2}x_{23} x_{27} x_{28} -1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{27} x_{28} +x_{13} x_{15} x_{21}^{2}x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{20} x_{21} x_{23} x_{27} x_{28} +1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{13} x_{16} x_{20} x_{21} x_{23} x_{27} x_{28} +x_{14} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28} -2x_{13} x_{15} x_{20} x_{21} x_{23} x_{27} x_{28} -1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{14} x_{20} x_{21} x_{23} x_{27} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28} +x_{15} x_{17} x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{27} x_{28} -x_{15}^{2}x_{19} x_{21} x_{23} x_{27} x_{28} +1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{23} x_{27} x_{28} -3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{27} x_{28} +2x_{16} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{21} x_{23} x_{27} x_{28} -x_{15} x_{16} x_{18} x_{21} x_{23} x_{27} x_{28} +2x_{15}^{2}x_{18} x_{21} x_{23} x_{27} x_{28} -2x_{14} x_{15} x_{18} x_{21} x_{23} x_{27} x_{28} +3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{27} x_{28} +2x_{14} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -4x_{13} x_{17} x_{20}^{2}x_{23} x_{27} x_{28} -x_{14} x_{16} x_{20}^{2}x_{23} x_{27} x_{28} +2x_{13} x_{16} x_{20}^{2}x_{23} x_{27} x_{28} +x_{16} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} -x_{14} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} +4x_{13} x_{17} x_{19} x_{20} x_{23} x_{27} x_{28} -1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{27} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} +1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{13} x_{16} x_{19} x_{20} x_{23} x_{27} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28} +4x_{15} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{14} x_{17} x_{18} x_{20} x_{23} x_{27} x_{28} +x_{16}^{2}x_{18} x_{20} x_{23} x_{27} x_{28} -2x_{15} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{23} x_{27} x_{28} +x_{15} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -3x_{13} x_{17} x_{19}^{2}x_{23} x_{27} x_{28} -1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{27} x_{28} +3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{27} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28} +3x_{14} x_{17} x_{18} x_{19} x_{23} x_{27} x_{28} +x_{15} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28} -3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{27} x_{28} +1/2x_{15}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{14} x_{15} x_{22}^{2}x_{26}^{2}x_{28} +x_{14}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{13} x_{14} x_{22}^{2}x_{26}^{2}x_{28} +x_{13}^{2}x_{22}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{20} x_{22} x_{26}^{2}x_{28} +x_{14} x_{17} x_{20} x_{22} x_{26}^{2}x_{28} +1/2x_{14} x_{15} x_{20} x_{22} x_{26}^{2}x_{28} -x_{14}^{2}x_{20} x_{22} x_{26}^{2}x_{28} +x_{13} x_{14} x_{20} x_{22} x_{26}^{2}x_{28} -x_{13}^{2}x_{20} x_{22} x_{26}^{2}x_{28} +x_{15} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} -2x_{14} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} +x_{13} x_{17} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{15}^{2}x_{19} x_{22} x_{26}^{2}x_{28} +x_{14} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19} x_{22} x_{26}^{2}x_{28} +x_{14} x_{17} x_{18} x_{22} x_{26}^{2}x_{28} -2x_{13} x_{17} x_{18} x_{22} x_{26}^{2}x_{28} -1/2x_{14} x_{15} x_{18} x_{22} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{22} x_{26}^{2}x_{28} +1/2x_{17}^{2}x_{20}^{2}x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{20}^{2}x_{26}^{2}x_{28} +1/2x_{14}^{2}x_{20}^{2}x_{26}^{2}x_{28} -3/4x_{13} x_{14} x_{20}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{20}^{2}x_{26}^{2}x_{28} -x_{17}^{2}x_{19} x_{20} x_{26}^{2}x_{28} +1/2x_{15} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} +x_{14} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{13} x_{17} x_{19} x_{20} x_{26}^{2}x_{28} -x_{14} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +3/4x_{13} x_{15} x_{19} x_{20} x_{26}^{2}x_{28} +1/2x_{13} x_{14} x_{19} x_{20} x_{26}^{2}x_{28} -x_{13}^{2}x_{19} x_{20} x_{26}^{2}x_{28} -1/2x_{14} x_{17} x_{18} x_{20} x_{26}^{2}x_{28} +x_{13} x_{17} x_{18} x_{20} x_{26}^{2}x_{28} +3/4x_{14} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -3/2x_{13} x_{15} x_{18} x_{20} x_{26}^{2}x_{28} -1/2x_{14}^{2}x_{18} x_{20} x_{26}^{2}x_{28} +x_{13} x_{14} x_{18} x_{20} x_{26}^{2}x_{28} +x_{17}^{2}x_{19}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{19}^{2}x_{26}^{2}x_{28} +1/2x_{15}^{2}x_{19}^{2}x_{26}^{2}x_{28} -1/2x_{13} x_{15} x_{19}^{2}x_{26}^{2}x_{28} +3/4x_{13}^{2}x_{19}^{2}x_{26}^{2}x_{28} -x_{17}^{2}x_{18} x_{19} x_{26}^{2}x_{28} +x_{15} x_{17} x_{18} x_{19} x_{26}^{2}x_{28} -3/4x_{15}^{2}x_{18} x_{19} x_{26}^{2}x_{28} +1/2x_{14} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} +x_{13} x_{15} x_{18} x_{19} x_{26}^{2}x_{28} -3/2x_{13} x_{14} x_{18} x_{19} x_{26}^{2}x_{28} +x_{17}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{17} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{15}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{14} x_{15} x_{18}^{2}x_{26}^{2}x_{28} +3/4x_{14}^{2}x_{18}^{2}x_{26}^{2}x_{28} -x_{15} x_{16} x_{22}^{2}x_{25} x_{26} x_{28} +x_{14} x_{16} x_{22}^{2}x_{25} x_{26} x_{28} +x_{14} x_{15} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{14}^{2}x_{22}^{2}x_{25} x_{26} x_{28} +2x_{13} x_{14} x_{22}^{2}x_{25} x_{26} x_{28} -2x_{13}^{2}x_{22}^{2}x_{25} x_{26} x_{28} +x_{15} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28} -x_{14} x_{17} x_{21} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{15} x_{21} x_{22} x_{25} x_{26} x_{28} +x_{14}^{2}x_{21} x_{22} x_{25} x_{26} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{25} x_{26} x_{28} +x_{13}^{2}x_{21} x_{22} x_{25} x_{26} x_{28} +x_{16} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{20} x_{22} x_{25} x_{26} x_{28} +3/2x_{14}^{2}x_{20} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{14} x_{20} x_{22} x_{25} x_{26} x_{28} +2x_{13}^{2}x_{20} x_{22} x_{25} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{15} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +4x_{14} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{17} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{14} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{25} x_{26} x_{28} -3/2x_{14} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{25} x_{26} x_{28} +1/2x_{13} x_{14} x_{19} x_{22} x_{25} x_{26} x_{28} -x_{13}^{2}x_{19} x_{22} x_{25} x_{26} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28} +4x_{13} x_{17} x_{18} x_{22} x_{25} x_{26} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28} -x_{13} x_{16} x_{18} x_{22} x_{25} x_{26} x_{28} +x_{14} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28} -2x_{13} x_{15} x_{18} x_{22} x_{25} x_{26} x_{28} -1/2x_{14}^{2}x_{18} x_{22} x_{25} x_{26} x_{28} +x_{13} x_{14} x_{18} x_{22} x_{25} x_{26} x_{28} -x_{17}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +x_{14} x_{17} x_{20} x_{21} x_{25} x_{26} x_{28} -x_{14}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{25} x_{26} x_{28} -3/2x_{13}^{2}x_{20} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} -1/2x_{15} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28} -x_{14} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{13} x_{17} x_{19} x_{21} x_{25} x_{26} x_{28} +x_{14} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{25} x_{26} x_{28} -1/2x_{13} x_{14} x_{19} x_{21} x_{25} x_{26} x_{28} +x_{13}^{2}x_{19} x_{21} x_{25} x_{26} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28} -x_{13} x_{17} x_{18} x_{21} x_{25} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28} +3/2x_{13} x_{15} x_{18} x_{21} x_{25} x_{26} x_{28} +1/2x_{14}^{2}x_{18} x_{21} x_{25} x_{26} x_{28} -x_{13} x_{14} x_{18} x_{21} x_{25} x_{26} x_{28} +x_{17}^{2}x_{19} x_{20} x_{25} x_{26} x_{28} -1/2x_{16} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28} -3/2x_{14} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{19} x_{20} x_{25} x_{26} x_{28} +x_{14} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{25} x_{26} x_{28} -1/4x_{13} x_{14} x_{19} x_{20} x_{25} x_{26} x_{28} +1/2x_{13}^{2}x_{19} x_{20} x_{25} x_{26} x_{28} +x_{14} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28} -2x_{13} x_{17} x_{18} x_{20} x_{25} x_{26} x_{28} -3/4x_{14} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{20} x_{25} x_{26} x_{28} +1/4x_{14}^{2}x_{18} x_{20} x_{25} x_{26} x_{28} -1/2x_{13} x_{14} x_{18} x_{20} x_{25} x_{26} x_{28} -2x_{17}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} +3/2x_{15} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} -1/2x_{13} x_{17} x_{19}^{2}x_{25} x_{26} x_{28} -x_{15} x_{16} x_{19}^{2}x_{25} x_{26} x_{28} +1/2x_{13} x_{16} x_{19}^{2}x_{25} x_{26} x_{28} +1/4x_{13} x_{15} x_{19}^{2}x_{25} x_{26} x_{28} -3/4x_{13}^{2}x_{19}^{2}x_{25} x_{26} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{25} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} +1/2x_{14} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{19} x_{25} x_{26} x_{28} +3/2x_{15} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/2x_{14} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -x_{13} x_{16} x_{18} x_{19} x_{25} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28} -1/2x_{13} x_{15} x_{18} x_{19} x_{25} x_{26} x_{28} +3/2x_{13} x_{14} x_{18} x_{19} x_{25} x_{26} x_{28} -2x_{17}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{16} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} +2x_{15} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} -x_{14} x_{17} x_{18}^{2}x_{25} x_{26} x_{28} -3/2x_{15} x_{16} x_{18}^{2}x_{25} x_{26} x_{28} +x_{14} x_{16} x_{18}^{2}x_{25} x_{26} x_{28} +1/2x_{14} x_{15} x_{18}^{2}x_{25} x_{26} x_{28} -3/4x_{14}^{2}x_{18}^{2}x_{25} x_{26} x_{28} +x_{15} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} -2x_{14} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} +x_{13} x_{16} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15}^{2}x_{22}^{2}x_{24} x_{26} x_{28} +2x_{14} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{13} x_{15} x_{22}^{2}x_{24} x_{26} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28} +2x_{14} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{17} x_{21} x_{22} x_{24} x_{26} x_{28} +1/2x_{15}^{2}x_{21} x_{22} x_{24} x_{26} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{15} x_{21} x_{22} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} -2x_{14} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24} x_{26} x_{28} -1/2x_{15} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{14} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{16} x_{20} x_{22} x_{24} x_{26} x_{28} -3/2x_{14} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{20} x_{22} x_{24} x_{26} x_{28} +1/2x_{13} x_{14} x_{20} x_{22} x_{24} x_{26} x_{28} -x_{13}^{2}x_{20} x_{22} x_{24} x_{26} x_{28} +2x_{16} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28} -2x_{15} x_{17} x_{19} x_{22} x_{24} x_{26} x_{28} -x_{15} x_{16} x_{19} x_{22} x_{24} x_{26} x_{28} +3/2x_{15}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{19} x_{22} x_{24} x_{26} x_{28} +3/2x_{13}^{2}x_{19} x_{22} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24} x_{26} x_{28} +1/2x_{15} x_{16} x_{18} x_{22} x_{24} x_{26} x_{28} -x_{15}^{2}x_{18} x_{22} x_{24} x_{26} x_{28} +1/2x_{14} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{18} x_{22} x_{24} x_{26} x_{28} -3/2x_{13} x_{14} x_{18} x_{22} x_{24} x_{26} x_{28} +x_{17}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{15} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} +1/2x_{13} x_{17} x_{20} x_{21} x_{24} x_{26} x_{28} +x_{14} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28} -3/4x_{13} x_{15} x_{20} x_{21} x_{24} x_{26} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{24} x_{26} x_{28} +x_{13}^{2}x_{20} x_{21} x_{24} x_{26} x_{28} -2x_{17}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +2x_{15} x_{17} x_{19} x_{21} x_{24} x_{26} x_{28} -x_{15}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{24} x_{26} x_{28} -3/2x_{13}^{2}x_{19} x_{21} x_{24} x_{26} x_{28} +x_{17}^{2}x_{18} x_{21} x_{24} x_{26} x_{28} -x_{15} x_{17} x_{18} x_{21} x_{24} x_{26} x_{28} +3/4x_{15}^{2}x_{18} x_{21} x_{24} x_{26} x_{28} -1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{13} x_{15} x_{18} x_{21} x_{24} x_{26} x_{28} +3/2x_{13} x_{14} x_{18} x_{21} x_{24} x_{26} x_{28} -x_{17}^{2}x_{20}^{2}x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} +3/2x_{14} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{13} x_{17} x_{20}^{2}x_{24} x_{26} x_{28} -x_{14} x_{16} x_{20}^{2}x_{24} x_{26} x_{28} +3/4x_{13} x_{16} x_{20}^{2}x_{24} x_{26} x_{28} +1/4x_{13} x_{14} x_{20}^{2}x_{24} x_{26} x_{28} -1/2x_{13}^{2}x_{20}^{2}x_{24} x_{26} x_{28} +2x_{17}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} -3/2x_{15} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} +1/2x_{13} x_{17} x_{19} x_{20} x_{24} x_{26} x_{28} +x_{15} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28} -1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{26} x_{28} -1/4x_{13} x_{15} x_{19} x_{20} x_{24} x_{26} x_{28} +3/4x_{13}^{2}x_{19} x_{20} x_{24} x_{26} x_{28} -x_{17}^{2}x_{18} x_{20} x_{24} x_{26} x_{28} +1/2x_{16} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} -x_{14} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{13} x_{17} x_{18} x_{20} x_{24} x_{26} x_{28} -3/4x_{15} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} -x_{13} x_{16} x_{18} x_{20} x_{24} x_{26} x_{28} -1/4x_{14} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28} +x_{13} x_{15} x_{18} x_{20} x_{24} x_{26} x_{28} -3/4x_{13} x_{14} x_{18} x_{20} x_{24} x_{26} x_{28} +1/2x_{15} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28} -3/2x_{13} x_{17} x_{18} x_{19} x_{24} x_{26} x_{28} -1/2x_{15} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28} +3/2x_{13} x_{16} x_{18} x_{19} x_{24} x_{26} x_{28} +1/4x_{15}^{2}x_{18} x_{19} x_{24} x_{26} x_{28} -3/4x_{13} x_{15} x_{18} x_{19} x_{24} x_{26} x_{28} -x_{15} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +3/2x_{14} x_{17} x_{18}^{2}x_{24} x_{26} x_{28} +x_{15} x_{16} x_{18}^{2}x_{24} x_{26} x_{28} -3/2x_{14} x_{16} x_{18}^{2}x_{24} x_{26} x_{28} -1/2x_{15}^{2}x_{18}^{2}x_{24} x_{26} x_{28} +3/4x_{14} x_{15} x_{18}^{2}x_{24} x_{26} x_{28} +x_{14} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -2x_{13} x_{16} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{15} x_{22}^{2}x_{23} x_{26} x_{28} +2x_{13} x_{15} x_{22}^{2}x_{23} x_{26} x_{28} -x_{14} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{17} x_{21} x_{22} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28} -x_{13} x_{15} x_{21} x_{22} x_{23} x_{26} x_{28} +x_{14} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{20} x_{22} x_{23} x_{26} x_{28} -x_{14} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28} +2x_{13} x_{16} x_{20} x_{22} x_{23} x_{26} x_{28} +x_{14} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28} -2x_{13} x_{15} x_{20} x_{22} x_{23} x_{26} x_{28} -1/2x_{14}^{2}x_{20} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{14} x_{20} x_{22} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28} +x_{15} x_{17} x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{26} x_{28} -x_{15}^{2}x_{19} x_{22} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28} +x_{13} x_{15} x_{19} x_{22} x_{23} x_{26} x_{28} -3/2x_{13} x_{14} x_{19} x_{22} x_{23} x_{26} x_{28} +2x_{16} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{22} x_{23} x_{26} x_{28} -x_{15} x_{16} x_{18} x_{22} x_{23} x_{26} x_{28} +2x_{15}^{2}x_{18} x_{22} x_{23} x_{26} x_{28} -2x_{14} x_{15} x_{18} x_{22} x_{23} x_{26} x_{28} +3/2x_{14}^{2}x_{18} x_{22} x_{23} x_{26} x_{28} +1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{17} x_{20} x_{21} x_{23} x_{26} x_{28} -3/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{26} x_{28} +1/2x_{14}^{2}x_{20} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{14} x_{20} x_{21} x_{23} x_{26} x_{28} +x_{17}^{2}x_{19} x_{21} x_{23} x_{26} x_{28} -x_{15} x_{17} x_{19} x_{21} x_{23} x_{26} x_{28} +3/4x_{15}^{2}x_{19} x_{21} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28} -x_{13} x_{15} x_{19} x_{21} x_{23} x_{26} x_{28} +3/2x_{13} x_{14} x_{19} x_{21} x_{23} x_{26} x_{28} -2x_{17}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} +2x_{15} x_{17} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{15}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} +2x_{14} x_{15} x_{18} x_{21} x_{23} x_{26} x_{28} -3/2x_{14}^{2}x_{18} x_{21} x_{23} x_{26} x_{28} -x_{14} x_{17} x_{20}^{2}x_{23} x_{26} x_{28} +2x_{13} x_{17} x_{20}^{2}x_{23} x_{26} x_{28} +3/4x_{14} x_{16} x_{20}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{20}^{2}x_{23} x_{26} x_{28} -1/4x_{14}^{2}x_{20}^{2}x_{23} x_{26} x_{28} +1/2x_{13} x_{14} x_{20}^{2}x_{23} x_{26} x_{28} -x_{17}^{2}x_{19} x_{20} x_{23} x_{26} x_{28} +1/2x_{16} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} +x_{15} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} +1/2x_{14} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} -2x_{13} x_{17} x_{19} x_{20} x_{23} x_{26} x_{28} -3/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} +2x_{13} x_{16} x_{19} x_{20} x_{23} x_{26} x_{28} +1/2x_{14} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28} -1/2x_{13} x_{15} x_{19} x_{20} x_{23} x_{26} x_{28} -3/4x_{13} x_{14} x_{19} x_{20} x_{23} x_{26} x_{28} +2x_{17}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -x_{16} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} -2x_{15} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} +x_{14} x_{17} x_{18} x_{20} x_{23} x_{26} x_{28} +3/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28} -x_{14} x_{16} x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{14} x_{15} x_{18} x_{20} x_{23} x_{26} x_{28} +3/4x_{14}^{2}x_{18} x_{20} x_{23} x_{26} x_{28} -1/2x_{15} x_{17} x_{19}^{2}x_{23} x_{26} x_{28} +3/2x_{13} x_{17} x_{19}^{2}x_{23} x_{26} x_{28} +1/2x_{15} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -3/2x_{13} x_{16} x_{19}^{2}x_{23} x_{26} x_{28} -1/4x_{15}^{2}x_{19}^{2}x_{23} x_{26} x_{28} +3/4x_{13} x_{15} x_{19}^{2}x_{23} x_{26} x_{28} +x_{15} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28} -3/2x_{14} x_{17} x_{18} x_{19} x_{23} x_{26} x_{28} -x_{15} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28} +3/2x_{14} x_{16} x_{18} x_{19} x_{23} x_{26} x_{28} +1/2x_{15}^{2}x_{18} x_{19} x_{23} x_{26} x_{28} -3/4x_{14} x_{15} x_{18} x_{19} x_{23} x_{26} x_{28} +1/2x_{16}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{14} x_{16} x_{22}^{2}x_{25}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{25}^{2}x_{28} -2x_{13} x_{14} x_{22}^{2}x_{25}^{2}x_{28} +2x_{13}^{2}x_{22}^{2}x_{25}^{2}x_{28} -x_{16} x_{17} x_{21} x_{22} x_{25}^{2}x_{28} +x_{14} x_{17} x_{21} x_{22} x_{25}^{2}x_{28} +1/2x_{14} x_{16} x_{21} x_{22} x_{25}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{14} x_{21} x_{22} x_{25}^{2}x_{28} -2x_{13}^{2}x_{21} x_{22} x_{25}^{2}x_{28} +x_{16} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} -3x_{14} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{19} x_{22} x_{25}^{2}x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{25}^{2}x_{28} +3/2x_{14} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} -x_{13} x_{16} x_{19} x_{22} x_{25}^{2}x_{28} +2x_{14} x_{17} x_{18} x_{22} x_{25}^{2}x_{28} -4x_{13} x_{17} x_{18} x_{22} x_{25}^{2}x_{28} -x_{14} x_{16} x_{18} x_{22} x_{25}^{2}x_{28} +2x_{13} x_{16} x_{18} x_{22} x_{25}^{2}x_{28} +1/2x_{17}^{2}x_{21}^{2}x_{25}^{2}x_{28} -1/2x_{14} x_{17} x_{21}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{21}^{2}x_{25}^{2}x_{28} -3/4x_{13} x_{14} x_{21}^{2}x_{25}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{25}^{2}x_{28} -x_{17}^{2}x_{19} x_{21} x_{25}^{2}x_{28} +1/2x_{16} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} +3/2x_{14} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} -x_{13} x_{17} x_{19} x_{21} x_{25}^{2}x_{28} -x_{14} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +3/4x_{13} x_{16} x_{19} x_{21} x_{25}^{2}x_{28} +1/4x_{13} x_{14} x_{19} x_{21} x_{25}^{2}x_{28} -1/2x_{13}^{2}x_{19} x_{21} x_{25}^{2}x_{28} -x_{14} x_{17} x_{18} x_{21} x_{25}^{2}x_{28} +2x_{13} x_{17} x_{18} x_{21} x_{25}^{2}x_{28} +3/4x_{14} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{25}^{2}x_{28} -1/4x_{14}^{2}x_{18} x_{21} x_{25}^{2}x_{28} +1/2x_{13} x_{14} x_{18} x_{21} x_{25}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{25}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{25}^{2}x_{28} +1/2x_{16}^{2}x_{19}^{2}x_{25}^{2}x_{28} -1/4x_{13} x_{16} x_{19}^{2}x_{25}^{2}x_{28} +1/2x_{13}^{2}x_{19}^{2}x_{25}^{2}x_{28} -2x_{17}^{2}x_{18} x_{19} x_{25}^{2}x_{28} +2x_{16} x_{17} x_{18} x_{19} x_{25}^{2}x_{28} -3/4x_{16}^{2}x_{18} x_{19} x_{25}^{2}x_{28} +1/4x_{14} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} +1/2x_{13} x_{16} x_{18} x_{19} x_{25}^{2}x_{28} -x_{13} x_{14} x_{18} x_{19} x_{25}^{2}x_{28} +2x_{17}^{2}x_{18}^{2}x_{25}^{2}x_{28} -2x_{16} x_{17} x_{18}^{2}x_{25}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{25}^{2}x_{28} -1/2x_{14} x_{16} x_{18}^{2}x_{25}^{2}x_{28} +1/2x_{14}^{2}x_{18}^{2}x_{25}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{24} x_{25} x_{28} +x_{15} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{14} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} -x_{13} x_{16} x_{22}^{2}x_{24} x_{25} x_{28} -3x_{14} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +2x_{13} x_{15} x_{22}^{2}x_{24} x_{25} x_{28} +x_{13} x_{14} x_{22}^{2}x_{24} x_{25} x_{28} -2x_{13}^{2}x_{22}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{15} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} -2x_{14} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} +x_{13} x_{17} x_{21} x_{22} x_{24} x_{25} x_{28} -1/2x_{15} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{14} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{21} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28} -2x_{13} x_{15} x_{21} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{14} x_{21} x_{22} x_{24} x_{25} x_{28} +2x_{13}^{2}x_{21} x_{22} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +3x_{14} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} -2x_{13} x_{17} x_{20} x_{22} x_{24} x_{25} x_{28} +1/2x_{16}^{2}x_{20} x_{22} x_{24} x_{25} x_{28} -3/2x_{14} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28} +3x_{15} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28} -x_{13} x_{17} x_{19} x_{22} x_{24} x_{25} x_{28} +x_{16}^{2}x_{19} x_{22} x_{24} x_{25} x_{28} -3/2x_{15} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{22} x_{24} x_{25} x_{28} +x_{16} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} -x_{14} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} +4x_{13} x_{17} x_{18} x_{22} x_{24} x_{25} x_{28} -1/2x_{16}^{2}x_{18} x_{22} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} +1/2x_{14} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} -2x_{13} x_{16} x_{18} x_{22} x_{24} x_{25} x_{28} -x_{17}^{2}x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{15} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} +x_{14} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -1/2x_{13} x_{17} x_{21}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{21}^{2}x_{24} x_{25} x_{28} +3/4x_{13} x_{15} x_{21}^{2}x_{24} x_{25} x_{28} +1/2x_{13} x_{14} x_{21}^{2}x_{24} x_{25} x_{28} -x_{13}^{2}x_{21}^{2}x_{24} x_{25} x_{28} +x_{17}^{2}x_{20} x_{21} x_{24} x_{25} x_{28} -1/2x_{16} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} -3/2x_{14} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} +x_{13} x_{17} x_{20} x_{21} x_{24} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28} -3/4x_{13} x_{16} x_{20} x_{21} x_{24} x_{25} x_{28} -1/4x_{13} x_{14} x_{20} x_{21} x_{24} x_{25} x_{28} +1/2x_{13}^{2}x_{20} x_{21} x_{24} x_{25} x_{28} +2x_{17}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} -3/2x_{15} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} +1/2x_{13} x_{17} x_{19} x_{21} x_{24} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28} -1/2x_{13} x_{16} x_{19} x_{21} x_{24} x_{25} x_{28} -1/4x_{13} x_{15} x_{19} x_{21} x_{24} x_{25} x_{28} +3/4x_{13}^{2}x_{19} x_{21} x_{24} x_{25} x_{28} -x_{17}^{2}x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{16} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} +x_{15} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{14} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} -2x_{13} x_{17} x_{18} x_{21} x_{24} x_{25} x_{28} -3/4x_{15} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28} -1/2x_{14} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28} +2x_{13} x_{16} x_{18} x_{21} x_{24} x_{25} x_{28} +1/2x_{14} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28} -1/2x_{13} x_{15} x_{18} x_{21} x_{24} x_{25} x_{28} -3/4x_{13} x_{14} x_{18} x_{21} x_{24} x_{25} x_{28} -3x_{17}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +3x_{16} x_{17} x_{19} x_{20} x_{24} x_{25} x_{28} -x_{16}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +1/2x_{13} x_{16} x_{19} x_{20} x_{24} x_{25} x_{28} -x_{13}^{2}x_{19} x_{20} x_{24} x_{25} x_{28} +2x_{17}^{2}x_{18} x_{20} x_{24} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{24} x_{25} x_{28} +3/4x_{16}^{2}x_{18} x_{20} x_{24} x_{25} x_{28} -1/4x_{14} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28} -1/2x_{13} x_{16} x_{18} x_{20} x_{24} x_{25} x_{28} +x_{13} x_{14} x_{18} x_{20} x_{24} x_{25} x_{28} +x_{17}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{19} x_{24} x_{25} x_{28} +1/2x_{16}^{2}x_{18} x_{19} x_{24} x_{25} x_{28} -1/4x_{15} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28} -3/4x_{13} x_{16} x_{18} x_{19} x_{24} x_{25} x_{28} +x_{13} x_{15} x_{18} x_{19} x_{24} x_{25} x_{28} -2x_{17}^{2}x_{18}^{2}x_{24} x_{25} x_{28} +2x_{16} x_{17} x_{18}^{2}x_{24} x_{25} x_{28} -x_{16}^{2}x_{18}^{2}x_{24} x_{25} x_{28} +1/2x_{15} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} +3/4x_{14} x_{16} x_{18}^{2}x_{24} x_{25} x_{28} -x_{14} x_{15} x_{18}^{2}x_{24} x_{25} x_{28} -x_{14} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{16} x_{22}^{2}x_{23} x_{25} x_{28} +2x_{14} x_{15} x_{22}^{2}x_{23} x_{25} x_{28} -4x_{13} x_{15} x_{22}^{2}x_{23} x_{25} x_{28} -x_{14}^{2}x_{22}^{2}x_{23} x_{25} x_{28} +2x_{13} x_{14} x_{22}^{2}x_{23} x_{25} x_{28} +x_{14} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{21} x_{22} x_{23} x_{25} x_{28} +1/2x_{14} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28} +4x_{13} x_{15} x_{21} x_{22} x_{23} x_{25} x_{28} +x_{14}^{2}x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{14} x_{21} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28} +4x_{13} x_{17} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{16} x_{20} x_{22} x_{23} x_{25} x_{28} +x_{16} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} -2x_{15} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} +2x_{14} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{19} x_{22} x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19} x_{22} x_{23} x_{25} x_{28} +x_{15} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} -x_{14} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} +x_{13} x_{16} x_{19} x_{22} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28} +4x_{15} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{14} x_{17} x_{18} x_{22} x_{23} x_{25} x_{28} +x_{16}^{2}x_{18} x_{22} x_{23} x_{25} x_{28} -2x_{15} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{18} x_{22} x_{23} x_{25} x_{28} -1/2x_{14} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{17} x_{21}^{2}x_{23} x_{25} x_{28} +3/4x_{14} x_{15} x_{21}^{2}x_{23} x_{25} x_{28} -3/2x_{13} x_{15} x_{21}^{2}x_{23} x_{25} x_{28} -1/2x_{14}^{2}x_{21}^{2}x_{23} x_{25} x_{28} +x_{13} x_{14} x_{21}^{2}x_{23} x_{25} x_{28} +x_{14} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28} -2x_{13} x_{17} x_{20} x_{21} x_{23} x_{25} x_{28} -3/4x_{14} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28} +3/2x_{13} x_{16} x_{20} x_{21} x_{23} x_{25} x_{28} +1/4x_{14}^{2}x_{20} x_{21} x_{23} x_{25} x_{28} -1/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{25} x_{28} -x_{17}^{2}x_{19} x_{21} x_{23} x_{25} x_{28} +1/2x_{16} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{15} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} -x_{14} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{13} x_{17} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{15} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -x_{13} x_{16} x_{19} x_{21} x_{23} x_{25} x_{28} -1/4x_{14} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28} +x_{13} x_{15} x_{19} x_{21} x_{23} x_{25} x_{28} -3/4x_{13} x_{14} x_{19} x_{21} x_{23} x_{25} x_{28} +2x_{17}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} -x_{16} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} -2x_{15} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} +x_{14} x_{17} x_{18} x_{21} x_{23} x_{25} x_{28} +3/2x_{15} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28} -x_{14} x_{16} x_{18} x_{21} x_{23} x_{25} x_{28} -1/2x_{14} x_{15} x_{18} x_{21} x_{23} x_{25} x_{28} +3/4x_{14}^{2}x_{18} x_{21} x_{23} x_{25} x_{28} +2x_{17}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{19} x_{20} x_{23} x_{25} x_{28} +3/4x_{16}^{2}x_{19} x_{20} x_{23} x_{25} x_{28} -1/4x_{14} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28} -1/2x_{13} x_{16} x_{19} x_{20} x_{23} x_{25} x_{28} +x_{13} x_{14} x_{19} x_{20} x_{23} x_{25} x_{28} -4x_{17}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} +4x_{16} x_{17} x_{18} x_{20} x_{23} x_{25} x_{28} -3/2x_{16}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} +x_{14} x_{16} x_{18} x_{20} x_{23} x_{25} x_{28} -x_{14}^{2}x_{18} x_{20} x_{23} x_{25} x_{28} -x_{17}^{2}x_{19}^{2}x_{23} x_{25} x_{28} +x_{16} x_{17} x_{19}^{2}x_{23} x_{25} x_{28} -1/2x_{16}^{2}x_{19}^{2}x_{23} x_{25} x_{28} +1/4x_{15} x_{16} x_{19}^{2}x_{23} x_{25} x_{28} +3/4x_{13} x_{16} x_{19}^{2}x_{23} x_{25} x_{28} -x_{13} x_{15} x_{19}^{2}x_{23} x_{25} x_{28} +2x_{17}^{2}x_{18} x_{19} x_{23} x_{25} x_{28} -2x_{16} x_{17} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{16}^{2}x_{18} x_{19} x_{23} x_{25} x_{28} -1/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28} -3/4x_{14} x_{16} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{14} x_{15} x_{18} x_{19} x_{23} x_{25} x_{28} +x_{16}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{15}^{2}x_{22}^{2}x_{24}^{2}x_{28} -x_{13} x_{15} x_{22}^{2}x_{24}^{2}x_{28} +3/2x_{13}^{2}x_{22}^{2}x_{24}^{2}x_{28} -2x_{16} x_{17} x_{21} x_{22} x_{24}^{2}x_{28} +2x_{15} x_{17} x_{21} x_{22} x_{24}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{15}^{2}x_{21} x_{22} x_{24}^{2}x_{28} +x_{13} x_{15} x_{21} x_{22} x_{24}^{2}x_{28} -3/2x_{13}^{2}x_{21} x_{22} x_{24}^{2}x_{28} +2x_{16} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} -3x_{15} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} +x_{13} x_{17} x_{20} x_{22} x_{24}^{2}x_{28} -x_{16}^{2}x_{20} x_{22} x_{24}^{2}x_{28} +3/2x_{15} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} -1/2x_{13} x_{16} x_{20} x_{22} x_{24}^{2}x_{28} +x_{15} x_{17} x_{18} x_{22} x_{24}^{2}x_{28} -3x_{13} x_{17} x_{18} x_{22} x_{24}^{2}x_{28} -1/2x_{15} x_{16} x_{18} x_{22} x_{24}^{2}x_{28} +3/2x_{13} x_{16} x_{18} x_{22} x_{24}^{2}x_{28} +x_{17}^{2}x_{21}^{2}x_{24}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{21}^{2}x_{24}^{2}x_{28} -1/2x_{13} x_{15} x_{21}^{2}x_{24}^{2}x_{28} +3/4x_{13}^{2}x_{21}^{2}x_{24}^{2}x_{28} -2x_{17}^{2}x_{20} x_{21} x_{24}^{2}x_{28} +x_{16} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} +3/2x_{15} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{13} x_{17} x_{20} x_{21} x_{24}^{2}x_{28} -x_{15} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/2x_{13} x_{16} x_{20} x_{21} x_{24}^{2}x_{28} +1/4x_{13} x_{15} x_{20} x_{21} x_{24}^{2}x_{28} -3/4x_{13}^{2}x_{20} x_{21} x_{24}^{2}x_{28} -1/2x_{15} x_{17} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{13} x_{17} x_{18} x_{21} x_{24}^{2}x_{28} +1/2x_{15} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -3/2x_{13} x_{16} x_{18} x_{21} x_{24}^{2}x_{28} -1/4x_{15}^{2}x_{18} x_{21} x_{24}^{2}x_{28} +3/4x_{13} x_{15} x_{18} x_{21} x_{24}^{2}x_{28} +3/2x_{17}^{2}x_{20}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{20}^{2}x_{24}^{2}x_{28} +1/2x_{16}^{2}x_{20}^{2}x_{24}^{2}x_{28} -1/4x_{13} x_{16} x_{20}^{2}x_{24}^{2}x_{28} +1/2x_{13}^{2}x_{20}^{2}x_{24}^{2}x_{28} -x_{17}^{2}x_{18} x_{20} x_{24}^{2}x_{28} +x_{16} x_{17} x_{18} x_{20} x_{24}^{2}x_{28} -1/2x_{16}^{2}x_{18} x_{20} x_{24}^{2}x_{28} +1/4x_{15} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} +3/4x_{13} x_{16} x_{18} x_{20} x_{24}^{2}x_{28} -x_{13} x_{15} x_{18} x_{20} x_{24}^{2}x_{28} +3/2x_{17}^{2}x_{18}^{2}x_{24}^{2}x_{28} -3/2x_{16} x_{17} x_{18}^{2}x_{24}^{2}x_{28} +3/4x_{16}^{2}x_{18}^{2}x_{24}^{2}x_{28} -3/4x_{15} x_{16} x_{18}^{2}x_{24}^{2}x_{28} +1/2x_{15}^{2}x_{18}^{2}x_{24}^{2}x_{28} -x_{16}^{2}x_{22}^{2}x_{23} x_{24} x_{28} +2x_{15} x_{16} x_{22}^{2}x_{23} x_{24} x_{28} -2x_{15}^{2}x_{22}^{2}x_{23} x_{24} x_{28} +x_{14} x_{15} x_{22}^{2}x_{23} x_{24} x_{28} +2x_{13} x_{15} x_{22}^{2}x_{23} x_{24} x_{28} -3x_{13} x_{14} x_{22}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{15} x_{17} x_{21} x_{22} x_{23} x_{24} x_{28} -x_{15} x_{16} x_{21} x_{22} x_{23} x_{24} x_{28} +2x_{15}^{2}x_{21} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{13} x_{15} x_{21} x_{22} x_{23} x_{24} x_{28} +3x_{13} x_{14} x_{21} x_{22} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} +4x_{15} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} -x_{14} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} -2x_{13} x_{17} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{16}^{2}x_{20} x_{22} x_{23} x_{24} x_{28} -2x_{15} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28} +1/2x_{14} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28} +x_{13} x_{16} x_{20} x_{22} x_{23} x_{24} x_{28} -x_{15} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28} +3x_{13} x_{17} x_{19} x_{22} x_{23} x_{24} x_{28} +1/2x_{15} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28} -3/2x_{13} x_{16} x_{19} x_{22} x_{23} x_{24} x_{28} -2x_{15} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28} +3x_{14} x_{17} x_{18} x_{22} x_{23} x_{24} x_{28} +x_{15} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28} -3/2x_{14} x_{16} x_{18} x_{22} x_{23} x_{24} x_{28} -x_{17}^{2}x_{21}^{2}x_{23} x_{24} x_{28} +x_{15} x_{17} x_{21}^{2}x_{23} x_{24} x_{28} -3/4x_{15}^{2}x_{21}^{2}x_{23} x_{24} x_{28} +1/2x_{14} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} +x_{13} x_{15} x_{21}^{2}x_{23} x_{24} x_{28} -3/2x_{13} x_{14} x_{21}^{2}x_{23} x_{24} x_{28} +2x_{17}^{2}x_{20} x_{21} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} -2x_{15} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} +1/2x_{14} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} +x_{13} x_{17} x_{20} x_{21} x_{23} x_{24} x_{28} +3/2x_{15} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/2x_{14} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -x_{13} x_{16} x_{20} x_{21} x_{23} x_{24} x_{28} -1/4x_{14} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28} -1/2x_{13} x_{15} x_{20} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{14} x_{20} x_{21} x_{23} x_{24} x_{28} +1/2x_{15} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28} -3/2x_{13} x_{17} x_{19} x_{21} x_{23} x_{24} x_{28} -1/2x_{15} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28} +3/2x_{13} x_{16} x_{19} x_{21} x_{23} x_{24} x_{28} +1/4x_{15}^{2}x_{19} x_{21} x_{23} x_{24} x_{28} -3/4x_{13} x_{15} x_{19} x_{21} x_{23} x_{24} x_{28} +x_{15} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28} -3/2x_{14} x_{17} x_{18} x_{21} x_{23} x_{24} x_{28} -x_{15} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28} +3/2x_{14} x_{16} x_{18} x_{21} x_{23} x_{24} x_{28} +1/2x_{15}^{2}x_{18} x_{21} x_{23} x_{24} x_{28} -3/4x_{14} x_{15} x_{18} x_{21} x_{23} x_{24} x_{28} -2x_{17}^{2}x_{20}^{2}x_{23} x_{24} x_{28} +2x_{16} x_{17} x_{20}^{2}x_{23} x_{24} x_{28} -3/4x_{16}^{2}x_{20}^{2}x_{23} x_{24} x_{28} +1/4x_{14} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} +1/2x_{13} x_{16} x_{20}^{2}x_{23} x_{24} x_{28} -x_{13} x_{14} x_{20}^{2}x_{23} x_{24} x_{28} +x_{17}^{2}x_{19} x_{20} x_{23} x_{24} x_{28} -x_{16} x_{17} x_{19} x_{20} x_{23} x_{24} x_{28} +1/2x_{16}^{2}x_{19} x_{20} x_{23} x_{24} x_{28} -1/4x_{15} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28} -3/4x_{13} x_{16} x_{19} x_{20} x_{23} x_{24} x_{28} +x_{13} x_{15} x_{19} x_{20} x_{23} x_{24} x_{28} +2x_{17}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -2x_{16} x_{17} x_{18} x_{20} x_{23} x_{24} x_{28} +x_{16}^{2}x_{18} x_{20} x_{23} x_{24} x_{28} -1/2x_{15} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28} -3/4x_{14} x_{16} x_{18} x_{20} x_{23} x_{24} x_{28} +x_{14} x_{15} x_{18} x_{20} x_{23} x_{24} x_{28} -3x_{17}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3x_{16} x_{17} x_{18} x_{19} x_{23} x_{24} x_{28} -3/2x_{16}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +3/2x_{15} x_{16} x_{18} x_{19} x_{23} x_{24} x_{28} -x_{15}^{2}x_{18} x_{19} x_{23} x_{24} x_{28} +x_{16}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{15} x_{16} x_{22}^{2}x_{23}^{2}x_{28} +2x_{15}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{14} x_{15} x_{22}^{2}x_{23}^{2}x_{28} +3/2x_{14}^{2}x_{22}^{2}x_{23}^{2}x_{28} -2x_{16} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{21} x_{22} x_{23}^{2}x_{28} +x_{15} x_{16} x_{21} x_{22} x_{23}^{2}x_{28} -2x_{15}^{2}x_{21} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{15} x_{21} x_{22} x_{23}^{2}x_{28} -3/2x_{14}^{2}x_{21} x_{22} x_{23}^{2}x_{28} +2x_{16} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} -4x_{15} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} +2x_{14} x_{17} x_{20} x_{22} x_{23}^{2}x_{28} -x_{16}^{2}x_{20} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{16} x_{20} x_{22} x_{23}^{2}x_{28} -x_{14} x_{16} x_{20} x_{22} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -3x_{14} x_{17} x_{19} x_{22} x_{23}^{2}x_{28} -x_{15} x_{16} x_{19} x_{22} x_{23}^{2}x_{28} +3/2x_{14} x_{16} x_{19} x_{22} x_{23}^{2}x_{28} +x_{17}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{15} x_{17} x_{21}^{2}x_{23}^{2}x_{28} +3/4x_{15}^{2}x_{21}^{2}x_{23}^{2}x_{28} -x_{14} x_{15} x_{21}^{2}x_{23}^{2}x_{28} +3/4x_{14}^{2}x_{21}^{2}x_{23}^{2}x_{28} -2x_{17}^{2}x_{20} x_{21} x_{23}^{2}x_{28} +x_{16} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} +2x_{15} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} -x_{14} x_{17} x_{20} x_{21} x_{23}^{2}x_{28} -3/2x_{15} x_{16} x_{20} x_{21} x_{23}^{2}x_{28} +x_{14} x_{16} x_{20} x_{21} x_{23}^{2}x_{28} +1/2x_{14} x_{15} x_{20} x_{21} x_{23}^{2}x_{28} -3/4x_{14}^{2}x_{20} x_{21} x_{23}^{2}x_{28} -x_{15} x_{17} x_{19} x_{21} x_{23}^{2}x_{28} +3/2x_{14} x_{17} x_{19} x_{21} x_{23}^{2}x_{28} +x_{15} x_{16} x_{19} x_{21} x_{23}^{2}x_{28} -3/2x_{14} x_{16} x_{19} x_{21} x_{23}^{2}x_{28} -1/2x_{15}^{2}x_{19} x_{21} x_{23}^{2}x_{28} +3/4x_{14} x_{15} x_{19} x_{21} x_{23}^{2}x_{28} +2x_{17}^{2}x_{20}^{2}x_{23}^{2}x_{28} -2x_{16} x_{17} x_{20}^{2}x_{23}^{2}x_{28} +3/4x_{16}^{2}x_{20}^{2}x_{23}^{2}x_{28} -1/2x_{14} x_{16} x_{20}^{2}x_{23}^{2}x_{28} +1/2x_{14}^{2}x_{20}^{2}x_{23}^{2}x_{28} -2x_{17}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +2x_{16} x_{17} x_{19} x_{20} x_{23}^{2}x_{28} -x_{16}^{2}x_{19} x_{20} x_{23}^{2}x_{28} +1/2x_{15} x_{16} x_{19} x_{20} x_{23}^{2}x_{28} +3/4x_{14} x_{16} x_{19} x_{20} x_{23}^{2}x_{28} -x_{14} x_{15} x_{19} x_{20} x_{23}^{2}x_{28} +3/2x_{17}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/2x_{16} x_{17} x_{19}^{2}x_{23}^{2}x_{28} +3/4x_{16}^{2}x_{19}^{2}x_{23}^{2}x_{28} -3/4x_{15} x_{16} x_{19}^{2}x_{23}^{2}x_{28} +1/2x_{15}^{2}x_{19}^{2}x_{23}^{2}x_{28} -1, x_{14} , x_{19} , x_{24} , x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} -2, x_{6} x_{11} +x_{5} x_{10} , x_{5} x_{12} +x_{4} x_{11} , x_{6} x_{12} +x_{5} x_{11} -1, x_{4} x_{16} -x_{4} x_{15} , x_{5} x_{16} -x_{5} x_{14} , x_{6} x_{15} -x_{6} x_{14} , x_{10} x_{16} -x_{10} x_{15} , x_{11} x_{16} -x_{11} x_{14} , x_{12} x_{15} -x_{12} x_{14} , x_{4} x_{21} -x_{4} x_{20} , x_{5} x_{21} -x_{5} x_{19} , x_{6} x_{20} -x_{6} x_{19} , x_{10} x_{21} -x_{10} x_{20} , x_{11} x_{21} -x_{11} x_{19} , x_{12} x_{20} -x_{12} x_{19} , x_{4} x_{26} -x_{4} x_{25} , x_{5} x_{26} -x_{5} x_{24} , x_{6} x_{25} -x_{6} x_{24} , x_{10} x_{26} -x_{10} x_{25} , x_{11} x_{26} -x_{11} x_{24} , x_{12} x_{25} -x_{12} x_{24} )