Highest vectors of representations (total 23) ; the vectors are over the primal subalgebra. | g−5 | h1 | h3 | h5 | g5 | g11 | g14 | g15 | g17 | g4 | g8 | g9 | g12 | g23 | g24 | g25 | g18 | g20 | g21 | g22 | g13 | g16 | g19 |
weight | 0 | 0 | 0 | 0 | 0 | ω1 | ω1 | ω1 | ω1 | ω2 | ω2 | ω2 | ω2 | 2ω1 | 2ω1 | 2ω1 | ω1+ω2 | ω1+ω2 | ω1+ω2 | ω1+ω2 | 2ω2 | 2ω2 | 2ω2 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −4ψ3 | 0 | 0 | 0 | 4ψ3 | ω1−ψ1−2ψ3 | ω1+ψ1−2ψ3 | ω1−ψ1+2ψ3 | ω1+ψ1+2ψ3 | ω2−ψ2−2ψ3 | ω2+ψ2−2ψ3 | ω2−ψ2+2ψ3 | ω2+ψ2+2ψ3 | 2ω1−2ψ1 | 2ω1 | 2ω1+2ψ1 | ω1+ω2−ψ1−ψ2 | ω1+ω2+ψ1−ψ2 | ω1+ω2−ψ1+ψ2 | ω1+ω2+ψ1+ψ2 | 2ω2−2ψ2 | 2ω2 | 2ω2+2ψ2 |
Isotypical components + highest weight | V−4ψ3 → (0, 0, 0, 0, -4) | V0 → (0, 0, 0, 0, 0) | V4ψ3 → (0, 0, 0, 0, 4) | Vω1−ψ1−2ψ3 → (1, 0, -1, 0, -2) | Vω1+ψ1−2ψ3 → (1, 0, 1, 0, -2) | Vω1−ψ1+2ψ3 → (1, 0, -1, 0, 2) | Vω1+ψ1+2ψ3 → (1, 0, 1, 0, 2) | Vω2−ψ2−2ψ3 → (0, 1, 0, -1, -2) | Vω2+ψ2−2ψ3 → (0, 1, 0, 1, -2) | Vω2−ψ2+2ψ3 → (0, 1, 0, -1, 2) | Vω2+ψ2+2ψ3 → (0, 1, 0, 1, 2) | V2ω1−2ψ1 → (2, 0, -2, 0, 0) | V2ω1 → (2, 0, 0, 0, 0) | V2ω1+2ψ1 → (2, 0, 2, 0, 0) | Vω1+ω2−ψ1−ψ2 → (1, 1, -1, -1, 0) | Vω1+ω2+ψ1−ψ2 → (1, 1, 1, -1, 0) | Vω1+ω2−ψ1+ψ2 → (1, 1, -1, 1, 0) | Vω1+ω2+ψ1+ψ2 → (1, 1, 1, 1, 0) | V2ω2−2ψ2 → (0, 2, 0, -2, 0) | V2ω2 → (0, 2, 0, 0, 0) | V2ω2+2ψ2 → (0, 2, 0, 2, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | W16 | W17 | W18 | W19 | W20 | W21 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
|
|
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
| Semisimple subalgebra component.
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω1 −ω1 | ω2 −ω2 | ω2 −ω2 | ω2 −ω2 | ω2 −ω2 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | 2ω2 0 −2ω2 | 2ω2 0 −2ω2 | 2ω2 0 −2ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −4ψ3 | 0 | 4ψ3 | ω1−ψ1−2ψ3 −ω1−ψ1−2ψ3 | ω1+ψ1−2ψ3 −ω1+ψ1−2ψ3 | ω1−ψ1+2ψ3 −ω1−ψ1+2ψ3 | ω1+ψ1+2ψ3 −ω1+ψ1+2ψ3 | ω2−ψ2−2ψ3 −ω2−ψ2−2ψ3 | ω2+ψ2−2ψ3 −ω2+ψ2−2ψ3 | ω2−ψ2+2ψ3 −ω2−ψ2+2ψ3 | ω2+ψ2+2ψ3 −ω2+ψ2+2ψ3 | 2ω1−2ψ1 −2ψ1 −2ω1−2ψ1 | 2ω1 0 −2ω1 | 2ω1+2ψ1 2ψ1 −2ω1+2ψ1 | ω1+ω2−ψ1−ψ2 −ω1+ω2−ψ1−ψ2 ω1−ω2−ψ1−ψ2 −ω1−ω2−ψ1−ψ2 | ω1+ω2+ψ1−ψ2 −ω1+ω2+ψ1−ψ2 ω1−ω2+ψ1−ψ2 −ω1−ω2+ψ1−ψ2 | ω1+ω2−ψ1+ψ2 −ω1+ω2−ψ1+ψ2 ω1−ω2−ψ1+ψ2 −ω1−ω2−ψ1+ψ2 | ω1+ω2+ψ1+ψ2 −ω1+ω2+ψ1+ψ2 ω1−ω2+ψ1+ψ2 −ω1−ω2+ψ1+ψ2 | 2ω2−2ψ2 −2ψ2 −2ω2−2ψ2 | 2ω2 0 −2ω2 | 2ω2+2ψ2 2ψ2 −2ω2+2ψ2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−4ψ3 | M0 | M4ψ3 | Mω1−ψ1−2ψ3⊕M−ω1−ψ1−2ψ3 | Mω1+ψ1−2ψ3⊕M−ω1+ψ1−2ψ3 | Mω1−ψ1+2ψ3⊕M−ω1−ψ1+2ψ3 | Mω1+ψ1+2ψ3⊕M−ω1+ψ1+2ψ3 | Mω2−ψ2−2ψ3⊕M−ω2−ψ2−2ψ3 | Mω2+ψ2−2ψ3⊕M−ω2+ψ2−2ψ3 | Mω2−ψ2+2ψ3⊕M−ω2−ψ2+2ψ3 | Mω2+ψ2+2ψ3⊕M−ω2+ψ2+2ψ3 | M2ω1−2ψ1⊕M−2ψ1⊕M−2ω1−2ψ1 | M2ω1⊕M0⊕M−2ω1 | M2ω1+2ψ1⊕M2ψ1⊕M−2ω1+2ψ1 | Mω1+ω2−ψ1−ψ2⊕M−ω1+ω2−ψ1−ψ2⊕Mω1−ω2−ψ1−ψ2⊕M−ω1−ω2−ψ1−ψ2 | Mω1+ω2+ψ1−ψ2⊕M−ω1+ω2+ψ1−ψ2⊕Mω1−ω2+ψ1−ψ2⊕M−ω1−ω2+ψ1−ψ2 | Mω1+ω2−ψ1+ψ2⊕M−ω1+ω2−ψ1+ψ2⊕Mω1−ω2−ψ1+ψ2⊕M−ω1−ω2−ψ1+ψ2 | Mω1+ω2+ψ1+ψ2⊕M−ω1+ω2+ψ1+ψ2⊕Mω1−ω2+ψ1+ψ2⊕M−ω1−ω2+ψ1+ψ2 | M2ω2−2ψ2⊕M−2ψ2⊕M−2ω2−2ψ2 | M2ω2⊕M0⊕M−2ω2 | M2ω2+2ψ2⊕M2ψ2⊕M−2ω2+2ψ2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M−4ψ3 | 3M0 | M4ψ3 | Mω1−ψ1−2ψ3⊕M−ω1−ψ1−2ψ3 | Mω1+ψ1−2ψ3⊕M−ω1+ψ1−2ψ3 | Mω1−ψ1+2ψ3⊕M−ω1−ψ1+2ψ3 | Mω1+ψ1+2ψ3⊕M−ω1+ψ1+2ψ3 | Mω2−ψ2−2ψ3⊕M−ω2−ψ2−2ψ3 | Mω2+ψ2−2ψ3⊕M−ω2+ψ2−2ψ3 | Mω2−ψ2+2ψ3⊕M−ω2−ψ2+2ψ3 | Mω2+ψ2+2ψ3⊕M−ω2+ψ2+2ψ3 | M2ω1−2ψ1⊕M−2ψ1⊕M−2ω1−2ψ1 | M2ω1⊕M0⊕M−2ω1 | M2ω1+2ψ1⊕M2ψ1⊕M−2ω1+2ψ1 | Mω1+ω2−ψ1−ψ2⊕M−ω1+ω2−ψ1−ψ2⊕Mω1−ω2−ψ1−ψ2⊕M−ω1−ω2−ψ1−ψ2 | Mω1+ω2+ψ1−ψ2⊕M−ω1+ω2+ψ1−ψ2⊕Mω1−ω2+ψ1−ψ2⊕M−ω1−ω2+ψ1−ψ2 | Mω1+ω2−ψ1+ψ2⊕M−ω1+ω2−ψ1+ψ2⊕Mω1−ω2−ψ1+ψ2⊕M−ω1−ω2−ψ1+ψ2 | Mω1+ω2+ψ1+ψ2⊕M−ω1+ω2+ψ1+ψ2⊕Mω1−ω2+ψ1+ψ2⊕M−ω1−ω2+ψ1+ψ2 | M2ω2−2ψ2⊕M−2ψ2⊕M−2ω2−2ψ2 | M2ω2⊕M0⊕M−2ω2 | M2ω2+2ψ2⊕M2ψ2⊕M−2ω2+2ψ2 |
2 & | 0\\ |
0 & | 2\\ |